

NOTICE

Apple Computer Inc, reserves the right to miake improvements in the product deseribed in this manual at any time and without notice.


```
1979 by Apple Computer Inc.
10200 fandley Drave
Guperimo, CA 950/4
(408) 996-1010
```

Reotder Apole prosuct number A2LubOIA 1050 -0004. 041

Wrolen by Chrigoppier Eispimesi

Apple II Reference Manual

> A REFERENCE MANUAL FOR THE APPLE II AND THE APPLE II PLUS PERSONAL COMPUTERS

TABLE OF CONTENTS

CHAPTER 1 APPROACHING YOUR APPLE

```
TIE POWER SLOPRLY
TIIE MAIN BOARD
YALKING TGYIOLR STIPLE
GIE KI!YTOAAHD
RLAIJINGE THIT KEY WOARLI
THE XPPLE NHDEOI DESPLAY
TIIE VIDEG CUNNECTOR
HLIGAPPLE 150 I/ZI MOFDIFIC ATIGN
SCREENIORMAT
SCREFN MEMORS
SOREEN PXUFFS
SC REEN SWITC IIES
THF TEXI MOIME
THE LOW/RESHLLIION GRAPHICS (LUI RESI MOIDE
```



```
OTHLK INHUT/OSLTTLIFFATUBES
THE SIEAKER
THE CGESHTTF INTERS ACT.
TILL GAMME WOCINNNECTOR
ANNITNCIATOR:IUTRUTS
HNE-BIT INMUITS
ANASORG INPYTS
STROAE OLYJIJT
VAEIfITES OF APPLES
NUTOSIART KOSI I MONITITI: (EON
REVISION & I REVISIONI BOINKO
PQWER SLIPHY C&NSGEG
TME SPORLEIO IOUS
```


CHAPTER 2 CONVERSATION WITH APPLES

30 STANDARD OUTEUT
30 T)LESTXOV-I IST IR:ATUR

WRE THE I EXT WINDOWY

38 STANDAMDINGIT
3\% ETOKEV
33 BETLN

36 THERESTI CYCLE
36 SUTCOSTART HOM RESCT
3. SUTOSTART ROM SPECIAL LUE NTIUNS
T8 *TMLD MONETOR ROK RESFT
CHAPTER 3
THE SYSTEM MONITOR
$=$

B．
a\％RKMSTORACL

if Roms sichracis．
〕1 ItoLOCAlinNa

CHAPTER 4
 MEMORY ORGANIZATION

8）DFBUSGING：PROGRKANS
 5：Nザ5CTT बAFOTS NONTTOR COMATANLS STVCAAL TRICKS WITI THI NOMSITOR
57 CEEMIINGYOLR OWX COA1MNNDS
59 SU：SUMAKY OF MONTTOK COMAINWIS
क1 SOME USEFII NONITOR SLERCTITINEG
of MONTTOR SILCIXI LOC NIIONS．
he MINL－ASSEMBLER IMSTRLCTION FIRMATS

CHAPTER 5 INPUT/OUTPUT STRUCTURE

```
7% BlILI-JNMO
```



```
80) PESITFIURA! PAKII ROM SPGCE
81 IATTPRLLFROMMINF, 4LGOESTHONS
8I PFRIPIERAI SLIIT SRRNTEIIGNE RMM
&% THE CSW/ESW SWITSHIFS
84 F-XISNSTOM WOMN
```


CHAPTER 6 HARDWARE CONFIGURATION


```
DII SY&TLMTHMINL,
MZ PLIWLESLIPDLF
0A kOM जEMLE&
```



```
Th THL VIGLUGILNL及ATON
9% VIBLSOOLITPLT JNEKG
98% BUTLT-TN T/O
*) LSEH, IINTPLR
```



```
IOII TIIE KEY ECOARA?
```



```
IOT CASSETTF INTELQFACY ISCKS
```



```
IOS STl AKIN
```



```
17 APPENDIX A
THE 65\emptyset2 INSTRUCTION SET
\({ }^{122}\) APPENDIX B SPECIAL LOCATIONS
\({ }^{133}\) APPENDIX C ROM LISTINGS
17 GLOSSARY
\({ }^{185}\) BIBLIOGRAPHY
```


INDEX

(6) GFWERAL IKI3EK
IGS TNDEX OF FICEURES
las INDEX of HemTOS
195 TRDEX OF TANLIS
IV OST OF EIIARACITTLS

INTRODUCTION

This is the User Reference Manual for the Apple II and Apple II Plus personal computers. Like the Apple itseff, this book is a tool. As with all tools you should know a linte about it before you start to use it.

This book will not teach you how to program. It is a book of facts, not methods, If you have just unpacked your Apple, or you do not know how to program in any of the languages available for it, then before you conlinue wilh this book, read one of the other manuals accompanying your Apples. Depending upon which variety of Apple you have purchased, you should have received one of the following:

Apple II BASIC Programming Manual
(pari number A2L0005)
The Applesoft Tatorial
(part number A2L0018)

These are tutorial manuals for versions of the BASIC language available on the Apple. They also include complete instructions on setting up your Apple. The Bibliography at the end of this manual lists other books which may interest you

There are a few different varieties of Apples, and this manoal applies to afl of them. It is possible that some of the features noted in this manual will not be available on your particular Apple. In places where this manual mentions features which are nor universal to all Apples, it wilt use a footnote to warn you of these differences:

This manual describes the Apple II computer and its parts and procedures. There are sections on the System Monitor, the input/output devices and their operation, the internal organization of memory and input/output devices, and the actual electronic design of the Apple itself. For information on any other Apple hardware or software product, please refer to the manual accompanying that product.

CHAPTER 1 APPROACHING YOUR APPLE

```
2 THE POWER SUPPLY
3 THE MAIN BOARD
4 TALKING TU YOUR APPLE
5 THE KEYBOARD
6 READING THE KEYBOARD
4 THE APPLE VIDEO DISPLAY
9 THE VIDEO CONNECTOR
10 EURAPPLE (50 HZ) MODTFICATION
10 SCREEN FORMAT
12 SCREEN MEMORY
12 SCREEN PACES
12 SCREEN SWTICHES
14 THE TEXT MODE
17 THE LOW-RESOLUTION GRAPHICS ILO-RES) MODE
19 THE HIGH-RESOLUTION GRAPHICS (HIL-RES) MODE
20 OTHER INPUT/OUTPUT FEATURES
20 THESPEAKEK
22 THE CASSETTE INTERFACE
23 THE GAME I/O CONNECTOR
23 ANNUNCLATOR OUTPUTS
24 ONE-BIT INPUTS
24 ANALOG INPUTS
25 STROBE OUTPUT
25 VARIETIES DE APPLES
25 AUTOSTART ROM / MONITOR ROM
26 REVISION / / REVISION I BOARD
27 POWER SUPPLX CHANGES
27 THE APPLE II PLUS
```

For detailed information on setting up your Apple, refer to Chapter 1 of either the Apple BASIC Programming Manual or The Applesoft Tutorial.

In this manual, all directional instructions will refer to this orientation with the Apple's typewriter-like keyboard facing you, "front" and "down" are towards the keyboard, "back" and "up" are away. Remove the lid of the Apple by prying up the back edge until it "pops". then pull straight back on the lid and lift is off.

This is what you will see:

Photo 1. The Apple II.

THE POWER SUPPLY

The metal box on the left side of the interior is the Power Supply. It supplies four voltages: $+5 \mathrm{v},-5.2 \mathrm{v},+11.8 \mathrm{v}$, and -12.0 v . It is a high-frequency "switching"-type power supply, with many protective features to ensure that there can be no imbalances between the different supplies. The main power cord for the computer plugs directly into the back of the power supply. The power-on switch is also on the power supply itself, to protect you and your fingers from accidentally becoming part of the high-voltage power supply eircuit.

110 volt model

$110 / 220$ voll model

Photo 2. The back of the Apple Power Supply.

THE MAIN BOARD

The large green printed circuit board which takes up most of the bottom of the case is the computer itself. There are two slightly different models of the Apple II main board: the original (Reviston 0) and the Revision I board. The slight differences between the two lie in the electronics on the board. These differences are discussed throughout this book. A summary of the differences appears in the section "Varieties of Apples" on page 25.

On this board there are about eighty integrated circuits and a handful of other components. In the center of the board, just in front of the eight gold-toothed edge connectors ("slots") at the rear of the board, is an integrated efrcuit larger than all others. This is the brain of your Apple. It is a Synertek/MOS Technology 6502 microprocessor. In the Apple, it runs at a rate of $1,023,000$ machine cycles per second and can do over five hundred thousand addition or subtraction operations in one second. It has an addressing range of 65,536 eight-bit bytes. 1ts repertory includes 56 instructions with 13 addressing modes. This microprocessor and other versions of it are used in many computers systems, as well as other types of electronic equipment.

Just below the microprocessor are six sockets which may be filled with from one to six slightly smafler integrated curcuits. These ICs are the Read-Only Memory (ROM) "chips" for the Apple. They contain programs for the Apple which are available the moment you turn on the power. Many programs are available in ROM, including the Apple System Monstor, the Apple Autostart Monitor, Apple Integer BASIC and Applesoft II BASIC, and the Apple Programmer's Aid \# I utility subroutine package. The number and contents of your Apple's ROMs depend upon which type of Apple you have, and the accessories you have purchased.

Right below the ROMs and the central mounting nut is an area marked by a white square on the board which encloses twenty-four sockets for integrated cifcuits. Some or all of these may be filled with ICs. These are the main Random Access Memory (RAM) "chips" for your Apple. An Apple can hold 4,096 to 49,152 bytes of RAM memory in these three rows of components,* Each row can hold eight ICs of either the 4 K or 16 K variety. A row must hold eight of the same

[^0]type of memory components, but the two types can both be used in various combinations on different rows to give nine different memory sizes. "The RAM memory is used to hold all of the programs and data which you are using at any particular time. The information stored in RAM disappears when the power is turned off

The other components on the Apple 11 board have various functions: they control the flow of information from one part of the computer to another, gather data from the outside world, or send information to you by displaying it on a television screen or making a noise on a speaker.

The eight long peripheral slots on the back edge of the Apple's board can each hold a peripheral card to allow you to extend your RAM or ROM memory, or to connect your Apple to a printer or other input/output device: These slots are sometimes called the Apple's "backplane" or "mother board"

TALKING TO YOUR APPLE

Your link to your Apple is at your fingertips. Most programs and languages that are used with the Apple expect you to talk to them through the Apple's keyboard. It looks like a normal typeWriter keyboard, excent for some minor rearrangement and a few special keys. For a quick review on the keyboard, see pages 6 through 12 in the Apple II BASIC Programming Manual or pages 5 through 11 in The Applesofi Tutorial

Since you're talking with your fingers, you might as well be hearing with your eyes. The Apple will tell you what it is doing by displaying letters, numbers, symbols, and sometimes colored blocks and lines on a black-and-white or color television set.

[^1]
THE KEYBOARD

The Apple Keyboard				
Number of Keys:	52			
Coding:	Upper Cuse ASCII			
Number of codes:	91			
Output;	Seven bits, plus strobe			
Power requirements:	$\begin{aligned} & +5 \mathrm{v} \text { at } 120 \mathrm{~mA} \\ & -12 \mathrm{v} \text { al } 50 \mathrm{~mA} \end{aligned}$			
Rollover:	2 key			
Special keys:	CTRL			
	ESC RESET			
	REPT			
Memory mapped locations:		Hex	Decimal	
	Data	\$сめй	49152	-16384
	Clear	\$C010	49168	-16368

The Apple II has a built-in 52-key typewriter-like keyboard which communicates using the American Standard Code for Information Interchange (ASCII)* Ninety-one of the 96 upper-case ASCII characters can be generated difectly by the keyboard. Table 2 shows the keys on the keyboard and their associated ASCII codes. "Photo" 3 is a diagram of the keyboard.

The keyboard is electrically connected to the main circuit board by a 16 -condoctor cable with plugs at each end that plag into standard integrated circuit sockets. One end of this cable is connected to the keyboard; the other end plugs into the Apple board's keyboard connector, near the very front edge of the board, ander the keyboard itself. The electrical specifications for this connector are given on page 102 .

Most lariguages on the Apple have commands or statements which allow yout program to accept input from the keyboard quickly and easily (for example, the INPUT and GET statements in BASIC). However, your programs can also read the keyboard directly.

[^2]
"Photo" 3. The Apple Keyboard.

READING THE KEYBOARD

The keyboard sends seven bits of information which together form one character. These seven bits, along with another signal which indicates when a key has been pressed, are available to most programs as the contents of a memory location. Programs can read the current state of the keyboard by reading the contents of this location. When you press a key on the keyboard, the value in this location becomes 128 or greater, and the particular value it assumes is the numeric code for the character which was typed. Table 3 on page 8 shows the ASCII characters and their associated numeric codes. The location will hold this one value until you press another key, or until your program tells the memory location to forget the character it's holding.

Once your program has accepted and understood a keypress, it should tell the keyboard's memory location to "release" the character it is holding and prepare to receive a new one. Your program can do this by referencing another memory location. When you reference this other location, the value contained in the first location will drop below 128. This value will stay low until you press another key. This action is called "clearing the keyboard strobe". Your program can either read or write to the special memory location; the data which are written to or read from that location are irrelevant. It is the mere reference to the location which clears the keyboard strobe. Once you have cleared the keyboard strobe, you can still recover the code for the key which was last pressed by adding 128 (hexudecimal $\$ 80$) to the value in the keyboard location.

These are the special memory locations used by the keyboard:

Table 1: Keyboard Special Locations			
Localion: Hex	Decimal	Description	
\$C00	49152	-16384	Keyboard Data
SCD10	49168	-16368	Clear Keyboard Strobe

The RESET key at the upper right-hand corner does not generate an ASCII code, but instead is directly connected to the microprocessor. When this key is pressed, all processing stops. When the key is released, the computer starts a reset cycle. See page 36 for a description of the RESET
function,
The CTRL and SHIFT keys generate no codes by themselves, hul only alter the codes produced by other keys.

The REPT key, if pressed alone, produces a duplicate of the last code that was generated. Ir you press and hold down the RE.PT key while you are holding down a character key, in will act as if you weré presing that key repcatedly at a rate of 10 presses each second. This repetition will cease when you release either the charactef key or RE.PT

The POWER light at the lower left-hand cotner is an indieator lamp to show when the power to the Appie is on.

Key	Alone	CTRL	SHIFT	Both	Key	Alone	CTRL	SHIFT	Both
space	SAM	SAn	SAl	SAD	RETURN	S8D	S8D	\$8D	S8D
θ	\$B6	SB6	\$B6	\$B6	G	SC7	$\$ 87$	SC7	587
$1!$	\$81	\$81	SA1	SAI	H	SC8	588	\$C8	588
$2^{\prime \prime}$	\$82	SB2	$5 \mathrm{~S}_{2}$	SA2	I	SC9	\$89	SC9	\$89
3\#	SB3	SB3	5 A 3	SA3	J	SCA	58A	SCA	58A
45	\$34	SB4	5 A 4	SA4	K	5 CB	58B	5 CB	588
5\%	SB5	SBS	545	\$45	L.	Sce	\$8C	SCC	\$8C
68	SB6	\$86	SAG	SA6	M	SCD	\$8D	SDD	\$90
7	SB7	SB7	SA7	\$A7	N^{-}	SCE	58 E .	SDE	\$9E
81	SB8	\$88	SA8	\$ 18	0	SCF	S8F	5 CF	\$8F
9)	SB9	SB9	SA9	SA9	P@	\$D0	\$90	SCb	580
*	\$BA	SBA	5AA	SAA	Q	SDI	\$91	\$DI	\$91
it	SBB	\$BB	SAB	5 AB	R	SD2	$\$ 92$	\$D2	\$92
$<$	SAC	5 AC	\$BC	\$BC	S	\$D3	\$93	\$D3	\$93
$=$	SAD	SAD	\$8D	\$BD	T	\$D4	\$94	SD4	894
$>$	SAE	SAE	SBE	SBE	U	\$D5	\$95	SDS	595
$1 ?$	\$AF	SAF	SRE	\$BF	V	\$06	\$96	\$D6	896
A	\$Cl	\$81	SCl	581	W	SD7	\$97	\$D7	897
B	\$C2	\$82	SC2	\$82	X	\$D8	\$98	SD8	598
C	SC3	$\$ 83$	SC3	\$83	Y	\$D9	\$99	SD9	599
D	SC4	\$84	SC4	584	Z	SDA	89A	SDA	59^
E	\$C5	$\$ 85$	SC5	585		\$88	588	S88	588
F	SCE	$\$ 86$	SC6	586	-	595	595	595	595
					ESC	\$98	\$9B	\$98	598

All codes are given in hexadecomal. To find the decimal equivalents, use Table 3 .

Table 3: The ASCII Character Set								
Decimal:	128	144	160	176	192	208	224	246
Hex:	S80	\$96	\$Aø	SB0	SCD	SD0	SED	SFD
a $5 \emptyset$	nul	dle		\emptyset	@	P		P
1 \$1	soh	dcl	$!$	1	A	Q	a	4
2 \$2	stx	dc2	-	2	B	R	b	t
3 \$3	etx	dc3	\#	3	C	S	c	s
4 S4	eot	dc4	§	4	D	T	d	1
5 \$5	enq	nak	1\%	5	E	U	,	4
6 \$6	ack	syn	\&	6	F	V	f	v
7 \$7	bel	etb		7	G	W	g	w
8. $\$ 8$	bs	can	(8	H	X	h	X
9 99	ht	em)	9	I	Y	i	y
If SA	If	sub	*	:	J	Z	,	2
11 SB	vt	esc	$+$;	K	+	k	
12 \$C	f	is	,	$<$	1.	1	1	
13 SD	${ }_{\text {cr }}$	gs	-	-	M	!	m	1
14 SE	so	is		$>$	N		n	
15 SF	Si	us	1	,	0		o	rub

Groups of two and three lower case letters are abbreviations for standard ASCII control characters.

Not all the characters listed in this table can be generated by the keyboard. Specifically, the characters in the two rightmost columns (the lower case letters), the symbols I (left square bracket),) (backslash). - (underscore), and the control characters "fs", "us", and "rub", are not available on the Apple keyboard.

The decimal or hexadecimal value for any character in the above table is the sum of the decimal or hexadecimal numbers appearing at the top of the column and the left side of the row in which the character appears.

THE APPLE VIDEO DISPLAY

The Apple Video Display	
Display type:	Memory mapped into system RAM
Display modes:	Text, Low-Resolution Graphies, High-Resolution Graphics
Text capacity:	960 characters (24 lines, 40 columns)
Character type:	5×7 dot matrix
Character set:	Upper case ASCII, 64 characters
Character modes:	Normal, Inverse, Flashing
Graphics capacity:	1,920 blocks (Low-Resolution) in a 40 by 48 array 53,760 dots (High-Resolution) in a 280 by 192 array
Number of colors:	16 (Low-Resolution Graphics) 6 (High-Resolution Graphics)

THE VIDEO CONNECTOR

In the right rear corner of the Apple II board, there is a metal connector marked "VIDEO", This connector aflows you to attach a cable between the Apple and a closed-circuit video monitor. One end of the connecting cable should have a male RCA phono jack to plug into the Apple, and the other end should have a connector compatible with the particular device you are using. The signal that comes out of this connector on the Apple is similar to an Electronic Industries Association (EIA)-standard, National Television Standards Committee (NTSC)-compatible, positive composite color viden signal. The level of this signal can be adjusted from zero to 1 volt peak by the stmall round potentiometer on the right edge of the board about three inches from the back of the board.

A non-adjustable, 2 volts peak version of the same video signal is available in two other places, on a single wirc-wrap pin* on the left side of the board about two inches from the back of the board, and on one pin of a group of four similar pins also on the leff edge near the back of the board. The other three pins in this growp are connected to -5 volts, +12 volts, and ground. See page 97 for a full description of this auxiliary video connector.

[^3]

Photo 4. The Video Connectors and Potentiometer,

EURAPPLE (50 HZ) MODIFICATION

Your Apple cun be modified to generate a video signal compatible with the CCIR standard used in many Europein enuntries. To make this modifiestion, just cut the iwo X -shaped pads on the right edge of the board aboust nine inches from the back of the board, and solder together the thiee O-shuped pads in the same locutions (see phote 5). You can then comnect the vided connécior of yout Apple to a European stundard clused-circut black-und-white or color video moni105. If you wish, you can obtaim a "Eurocolor" encoder to convert the video signal into a PAL or SECAM sandard color television signat suitable for wise with any European television receiver, The encoder is as smatl minted circuit beand which plags imio the righmost periphenal siot (slot 7) in your spple and connects to the single auxiliary video output pin.

WARNING: This modification wiff soid the warranty on your Apple and requires the instafiation of a different main crystal. This modificution is not for beghners.

SCREEN FORMAT

Three different kinds of intormation can be shown on the viden display to which your Apple is sonnected:

Photo 5. Eurapple (50 hz) Jumper Pads.

1) Text. The Apple can display 24 lines of numbers. special symbols, and upper-case letters with 40 of these characters on each line. These characters are formed in a dot matrix 7 dots high and 5 dots wide. There is a one-dot wide space on either side of the character and a onedot high space above each line.
2) Low-Resolution Graphics. The Apple can present 1,920 colored squares in an array 40 blocks wide and 48 blocks high. The color of each block can be selected from a set of sixteen different colors. There is no space between blocks, so that any two adjacent blocks of the same color took. Tike a single, larger block.
3) High-Resolution Graphics. The Apple can also display colored dots on a matrix 280 dots wide and 192 dots high. The dots are the same size as the dots which make up the Text characters. There are six colors available in the Fligh-Resolution Graphies mode black, while. red, blue, green, and violet.? Each dot on the screen can be either black, white, or a color, although not alf coiors are avitilable for every dot.

When the Apple is disptaying a purticular type of information on the screen, it is said to be in that particulat "mode". Thus, if you see words and numbers on the sereen, you can reasonably be assured that your Apple is in Text mode. Similarly, if you see a sereen full of multicolored blacks, your computer is probably in Low-Resolution Graphics mode. You can also have a faurline "caption" of text at the botom of einher type of graphics screen. These Four lines replace

[^4]the lower 8 rows of blocks in Low-Resolution Graphics, leaving a 40 by 40 array. In HighResolution Graphos, they replace the bottom 32 rows of dots, leaving a 280 by 160 matrix. Yous cap use these "mixed modes" to display text and graphice simultaneotisly, but there is no way ta display borth graphics modes at the same time,

SCREEN MEMORY

The video display uses information in the system's RAM memory to generate its display, The value of a single memory location controls the appearance of a certain, fixed object on the screen. This object can be a character, two stacked colored blocks, or a line of seven dois. In Texd and Low-Resolution Graphics mode, an area of memory containing 1,024 locations is used as the source of the screen information. Text and Low-Resolution Graphics stare this memory area. In High-Resolution Graphics mode, a separate, larger area (8,192 locations) is needed becuuse of the greater imount of information which is being displayed. These urens of memory are usually culled "pinges" The ares reserved for 11 gh -Resolution Graphics is sometimes called the "picture buffer" because it is commonly used to slore a picture or drawing.

SCREEN PAGES

There are actuatly fwo arens from which each mode can draw its information. The first uren is called the "primary page" or "Page I" The second area is called the "secondary page" or "Page 2 " and is an area of the same size immedjately following the first ares. The secondary page is useful for storing pietures or texi which you want to be able to display instamly. A program can use the ftoo pages to parform animation by drawing on one page while displaying the other and suddents flipping pages

Text and Low-Resolution Graphics share the same memory range for the secondary page, just as they share the same runge for the promary page. Both mixed modes which were deseribed ubove are uiso available on the secondary page, but there is no way ta mix the two pages on the same screen.

Screen	Page	Begins it		Ends at:	
		Hex	Decimal		
Text/Lo-Res	Pantary	\$400	1024	S7FF	2647
	Secondary	\$890	2048	SBFE	3071
Hif-Res	Primary	\$2006	8192	\$3FFF	16383
	Secondary	S4000	16384	\$5FFF	24575

SCREEN SWITCHES

The devices which decide between the various modes, pages, and mixes arc called "sof switches". They are swithes because they have two positions (for example: on or off, text or graphics) and they are called "soft" because they are controlled by the software of the computer

A program can "Throw" a switch by referencing the special memory location for that switch. The data which are read from or writuen to the location are irrelevant, it is the reference in ithe address of the locution which throws the switch.

There are eight special memory locations which control the setting of the soft switches for the screen. They are set up in pairs; when you reference one location of the pair you turn its corresponding mode "on" and its companion mode "off" The pairs are:

Table 5: Screen Soft Switches			
Localio Hex	Decimal		Description:
SCu5n	49232	-16304	Display a GRAPHICS
SCu51	49233	-16303	Display TEXT mode,
SC052	49234	-16302	Display all TEXT or GRAPHICS
SC053	49235	-16391	Mix TEXT and a GRAPHICS mode.*
SC054	49236	-16300	Display the Primary page (Page 1).
SC055	49237	-16299	Display the Secondary page (Page 2).
$5 \mathrm{Ca56}$	49238	-76298	
\$C057	49239	-16297	Display HI-RES GRAPHICS mode. ${ }^{+}$

There are ten distinct combimations of these switches:

Table 6: Screen Mode Combinations					
Primary Page			Secondary Page		
Screen	Sweitches		Screen	Swiches	
All Text	SC054	\$C051	All Texi	SC055	SC051
All Lo-Res	SC054	SC056	All Lo-Res	\$CW55	5 C 056
Graphics	SC052	SC050	Graphics	Scos2	\$cosa
All Hi-Res	SC054	SC057	All Hi-Res	SC055	\$C657
Graphics	SC052	SC050	Graphics	SC052	SC050
Mixed Text	SCus4	\$C056	Mixed Text	SC055	SC056
and Lo-Res	SCu53	SC050	and Lo-Res	SC053	SC050
Mixed Text	SC054	\$C057	Mixed Text	SC055	$8 \mathrm{C057}$
and Hi-Res	SC053	SC05ด	and Hi-Res	\$C053	SC050

(Those of you who are learned in the ways of binary will immediately cry out. "Where's the other six?!", knowing full well that with 4 iwe-way switches there are indeed sixteen possible combinations. The answer to the mystery of the stx missing modes lies in the TEXT/GRAPHICS switch. When the computer is in Text mode, it can also be in one of six combinations of the Lo-Res/Hi-Res graphics mode. "mix" mode, of page selection. But since the Apple is displaying text, these different graphics medes are invisible.)

To set the Apple into one of these modes, a program needs onily to refer to the addresses of the memory locations which correspond to the switches that set that mode, Machine language programs should use the hexadecimal addresses given above; BASIC programs should PEEK or POKE their decimal eqoivalents (given in Table 5, "Soreen Soff Switches", above). The switches may be thrown in any order, however, when switching into one of the Graphics modes, it is helpful to throw the TEXT/GRAPHICS switch last. All the other changes in mode wilf then take place invisibly behind the text. so that when the Graphics mode is set, the finished graphics

[^5]
THE TEXT MODE

In the Text mode, the Apple can display 24 lines of characters with up 1040 characters on each line. Each character on the screen represents the contents of ore memory location from the memory range of the page being displayed. The charater set includes the 26 upper-case letters. the 10 digits, and 28 speciul chapacters for a total of 64 characters. The characters are formed in u dot malrix 5 dots wide and 7 dols high. There is a one-dot wide space on both sides of each character to separate adjacent chwacters and a one-dot high space sbove each line of churacters to separate adjacent lines. The chatacters are normally formed with white dots on a dark background: howevar, each charucter on the screen san also be displayed using datk dors on a white backeround or alternating between the lwo to produce a Dashing charmeter. When the Video Display is in Text mode, the videa circuitry in the Apple turns off the color bursi signal io the television montior, giving you a clearer black-und-white display ${ }^{+}$

The area of memery which is used for the primary text page starts at focation number 1024 and extends to location number 2047. The secondary screen bogins at location number 2048 and extends up to location 3071 . In machine language, the primary page is from hexadecimal budress $\$ 400$ to uddress 57 FF , the secondary page is from $\$ 800$ to $\$ \mathrm{BFF}$. Each of these pages is 1.024 bytes long. Those of you intrepid enough to do the muthiplication will realize that there are only 960 characters displayed on the sereen. The remaining 64 byles in each page which are not displayed on the screen are used as temporaty storage locations by programs stored in PROM on Apple Intelligent Interface peripheral boards (see page 82).

Photo 6 shows the sixty-four characters available on the Apple's screen.

Photo 6. The Apple Characier Set.

Table 7 gives the decimal and hexadecimal codes for the 64 characters in normal. inverse, and nashing display modes:

[^6]| | | 高吉
 䓌 | |
| :---: | :---: | :---: | :---: |
| | | 票 語
 会
 远
 航 | a．O an $H=3>3 x>N-1$ ．
 （b）$<\infty 00$ 山以
 |
| | | 生部 药 | $20 \simeq ज \vdash \square>B x>N ー \rightarrow$－
 （6）$<\infty \cup \cap H 口 O エ-\sim \simeq ー \Sigma Z$ |
| | 部 | $\ddot{\square}$
 $\therefore \frac{3}{3}$
 \＃
 数 |
 |
| | | | |

[^7]Figure 1 is a map of the Apple's display in Text mode. With the memory location addresses for each character position on the screen.

THE LOW-RESOLUTION GRAPHICS (LO-RES) MODE

In the Low-Resolution Graphics mode, the Apple presents the contents of the same 1,024 locutions of memory as is in the Text mode, but in a different format. In this mode. each byye of memory is displayed not as in ASCII sharacier, but is Iwo colored blocks, suscked one atop the other. The screen con show an array of blecks 40 wide and 48 figh. Eacls block can be any of sixlean colors. On a black-and-white television sel, the colors appear as pallems of grey and white dols

Since each byte in the page of memory for Low-Resolution Graphics rearesents two blocks on the sereen. stacked vertically, each byte is divided inko two equal sections, called (appropriately enongh) "nybbles". Euch nybble can hold a value from zero to 15. The value which is in the lower ryybble of the byte delermines the color for the lipper block of that byte on the screen, and the yalue which is in the upper nybble determines the colnr for the lower thock on the sereen. The colors are numbered zero to 15, thus:

Decimal	Hex	Cetlor	Decimal	Hex	Color
\square	50	Black	8	58	Brown
1	\$1	Magenta	9	59	Orange
2	\$2	Dark Bluc	10	SA	Grey 2
3	\$3	Purple	11	SB	Pink
4	54	Dark Green	12	SC	Light Green
5	85	Grey 1	13	SD	Yelfow
6	\$6	Medium Blue	14	SE	Aquamarine
7	57	Light Blue	15	SF	White

(Colors may vary from television to relevision, particularly on those without hue conttols. You can adjust the lint of the colors by adjusting the COLOR TRIM control on the right edge of the Apple board.)

So, ia hyte containing the hexadecimal value SD8 would appear on the screen as a brown block on top of a yellow block. Using decimal arithmetic, the color of the lower block is determined by the quotient of the value of the byte divided by 16. the color of the upper black is determined by the remainder

Figure 2 is an map of the Apple's display in Low-Resolation Graphics mode, wath the memory location addresses for each block on the screen.

Since the Law-Resofution Graphics screen displays the same area in memory as is used for the Texi screen. interesting thiogs happen if you switch belween the Text und Low-Resolution Graphics modes. For example, if the screen is it the Low-Resolution Graphies mode and is full of colored blocks, and then the TEXT/GRAPHICS screen switch is thrown to the Text mode, the screen will be filled with seemingly random iext characters, sometimes inverse or flashing. Similarly, a bereen full of text when viewed in Low-Resolution Graphics mode appears as long horizonial grey, pink, green or yellow bars separated by randomly colored blocks.

[^8]Figore 2. Map of the Low-Resolution Graphics Mode

THE HIGH-RESOLUTION GRAPHICS (HI-RES) MODE

Abstract

The Apple has a second type of graphic display, called High-Resolution Graphies (or sometimes "Hi-res"). When your Apple is in the High-Kesolution Graphics modes, it can display 53.760 dots in a matrix 280 dols wide and 192 dots bigh. The screen cat display black, white, violet, green, red. and blue dots, although there are some limitations concerning the color of individual dots.

Abstract

The High-Resolution Graphics mode takes its data from an 8,192-byte area of memory, usually called a "picture buffer". There are two separate picture buffers: one for the primary page and one for the secondary page. Both of these buffers are independent of and separate trom the memory areas used for Text and Low-Resolation Graphics. The primary page picture buffer for the High-Resolution Graphies mode begins at memory location number 8192 and extends up to Jocation number 16383. The secondary page picture buffer 「ollows on the heels of the first at memory location number 16384, extending up to location namber 24575. For thase of you with sixteen fingers, the primary page resides from $\$ 200010$ S3FFF and the secondary page follows in succession at $\$ 4000$ to $\$ 5$ FFF. If your Apple is equipped with $16 \mathrm{~K} \quad 116,384$ byles) or less of memory, then the secondary page is inaecessibie to you. if its memory size is less than 16 K . then the entire High-Resofution Graphies mode is unavallable to you.

Each dot on the screen represents one bit from the picture buffer Seven of the eight bits in each byte are displayed on the sereen, with the remaining bit used to select the colors of the dots in that byte. Forty bytes are displayed on eaeh line of the sereen. The least significant bit (first bit) of the lirst byte in the line is displayed on the lefle edge of the sereen, folfowed by the second bit. then the third, elc. The most significant (eighth) bil is nol displayed. Then follows the first bit of the next byte, and so on. A lotal or 280 dots are displayed on each of the 192 lines of the screen.

On a black-and-whte monitor or TV set, the dors whose corresponding bits ure "on" (or equal to 1) uppear white, the dots whose corresponding bits are "off" or (equal to a) appear blick. On a color monitor or TV, it is not so simple. If a bit is "off"; its corresponding dot will always be black. If a bit is "on", homvever, its color will depend upon the posiriun of that dot on the screen. If the dof is in the lefmost column on the screen, called "column \emptyset ", or in any even-numbered column, then it will uppear violet. If the dot is in the rightmost column (column 279) or any odd-numbered cofumm, then it will appear green. If two dots are placed side-by-side, they will both appear whice. If the undisplayed bit of a byte is turned on, then the colors blue and red are substitated for violet und green, respectively. Thus, there are sis colors available in the HighResolution Graphics mode, subject to the following limitations.

1) Dois in even columns must be black. 'violet, or blue:
2) Dols in odd columins must be black, groen, or red,
3) Each byte must be either a viotei/green byte or a blue/red byie, it is not possible to mix green and blue, green and red, violet and blue, or violet and red in the same byte,

[^9]4) Two colored dots side by side always appear white. even if they are in different bytes,
5) On Europeast-modified Appies, these rufes apply but the colors generated in the HighResolution Graphies mode may differ

Figure 3 shows the Apple's display screen in Iligh-Resolution Graphics mode with the memory addresses of each line on the screen

OTHER INPUT/OUTPUT FEATURES

Apple Input/Output Features
Inputs: Cussette Input Three One-bit Digital Inpats Four Analog Inputs
Ourpus: Cassetre Output Built-In Spenker Four "Annunciator" Dutpuls Untity Strobe Oulpur

THE SPEAKER

Inside the Apple's case, on the left side under the keyboard, is a small 8 ohm speaker. It is connected to the mternal electronies of the Apple so that a program can cause it to make various sounds.

The speaker is controlied by a solt switch. The switch can put the paper cone of the speaker in two positions: "in" and "out": This sof swith is not like the soft swotches controlling the various vided modes, bui is instend a logghe switch Eact lime a program references the memory address associated with the speaker swich, the speaker will change slate: change from "in" to "out" of vice-versa. Each lime the state is changed, the speaker produces a tiny "click". By referencing the address of the speaker switch frequently and continuously, a program can getnerate a steady tone from the speaker.

The soft swith for the speaker is associated with memory location number 492日6. Any reference to this address (or the equivalent addresses - 16336 or hexadecimal SC030) will cause the speaker tor emit a click.

A program can "reference" the address of the special location for the speaker by performing a "read" or "write" operation to that address. The data which are read or writter are irrelevant, ats if is the address which throws the switch. Note that a "write" operation on the Apple's 6502 microprocessor actually performs a "read" before the "write", so that if you use it "write" operation to flip any soft switch, you will actually throw that switch whee; For roggle-type soft switches, such as the speaker switch, this memns that a "write" operation to the special focation

THE CASSETTE INTERFACE

On the back edge of the Appte's main boutd, on the right side next to the VIDEO connector, are two small black packages labelled " JN " and "OUT". These are minialure phone jucks ittu which you cm plug a cable which has a pair of miniature phono plags on each end. The other end of this cable can be connected to a standard cassette tape recorder so thut your Apple can save information on audio cassetae tape and read it buck ugain

The connector raarked "OUT" is wired to yet another sol switct on the Apple board. This is another toggie switch, like the speaker swocth (see above). The soft switch for the cassette ourput plug can be toggled by referencing memory tocation number 49184 for the equivalent-1635? or hexadecimal SC02(). Referenting this focation will make the voltage on the OUT comector swing from zero to 25 millivolts (one fortiech of a volu, of return from 25 millivolts back to zeeo. If the other end of the cable is plugged into the MICROPHONE impot of a cassene tape recorder which is recording onto a tape, this will produce a liny "click" on the recording. By referencing the memory location associated with the cassette output soft switch repeatedly and frequently, a program can produce a tone pot the recording. By varying the pitch and duration of this lone, information may be encoded on a tape and saved for later use. Such a progrum io encode data on a lape is included in the System Monitor and is described on page 46

Be forewarned that if you sitemph to flip the sofl switeh for the cassette output by writing to its special location, you will actually generate two "clicks" on the recording. The reason for this is mentioned it the description of the speaker (aboye). You should only use "read" operations when logeling the cassette oulput soft switch.

The othor connector, marked " 1 N ", can be used to "listen" to a casserte tape recording. Its main purpose is to provide a means of listening to tones on the tape, decoding them into data. and storing them in memory. Thus, a program or data set which was stored on cassette tape may be read back in and used again.

The input circuit takes a 1 volt (peak-to-peak) signal from the casselte recorder's EARPIIONE jack and converts it into a string of ones and zeroes. Each time the signal applied to the input circuit swings from positive to negative, or vice-versid the inpul circuit changes slate. if it was sending ones, it will starl sending. zeroes, and vice versa. A program can inspect the state of the cassetle input circuit by looking at memory location number 49248 or the equivalents -16288 or fexadecimal SCB60. If the value which is read from this location is greater than or equal to 128 . then the state is a "one", if the value in the memory location is less than 128. then the state is a "zero". Although BASIC programs cant read the state of the cassetle input circuit, the speed of a BASIC program is usudly much ton slow to be able to make any sense out of what it reads. There is, however, a program in the System Monitor which will read the tones on a cassente tape and decude them. This is described on page 47.

THE GAME I/O CONNECTOR

The purpose of the Game $1 / Q$ connector is to allow you to connect special input and output devices to heighten the effect of programs in general, and specifically, game programs. This connéctor aflows you to comnect three one-bit inputs, four one-bit putputs, a data strobe, and four analog inputs to the Apple, all of which can be controlled by your programs. Supplied with your Apple is a pair of Game Controllers which are connected to cables which plog into the Game 1/0 connector. The two rotary dials on the Controllers are connected to two analog inputs on the Connector; the two pushbuttons are connected to two of the one-bit inputs.

ANNUNCIATOR OUTPUTS

The four one-bit outputs are called "annunciators". Each annunciator output can be used as an input to some other electronic device, or the annunciator outputs can be connected to circuits to drive lamps, relays, speakers, etc.

Each annunciator is controlled by a sofi switch. The addresses of the soft switches for the annunchators are arranged into four pairs, one pair for each annunciator. If you reference the first address in a pair, you turn the output of its cotresponding annunciator "off", if you reference the second address in the pair, you furn the annunciator's output "on". When an annunciator is
"off". The voltage on its pin on the Game $1 / O$ Connector is near 0 volts; when an annunciator is "on", the voltage is near 5 volts. There are no inherent means to determine the current setuing of an annunciator bit. The annunciator soft switches are:

Table 9: Annunciator Special Locations				
Ann.	State	Address:		
Decimal	Hex			
\emptyset	off	49240	-16296	SC058
	on	49241	-16295	SC059
1	off	49242	-16294	SC05A
	on	49243	-16293	SC05B
2	of	49244	-16292	SC05C
	on	49245	-16291	SC05D
3	of	49246	-16290	SC05E
	on	49247	-16289	SC05F

ONE-BIT INPUTS

The three one-bit inputs can each be connected to either another electronic device or to a pushbutton. You can read the state of any of the one-bit inputs from a machine language or BASIC program in the same manner as you read the Cassette Input, above. The locations for the three one-bit inputs have the addresses 49249 through 49251 (-16287 through - 16285 or hexadecimal \$C061 through \$C063).

ANALOG INPUTS

The four analog inputs can be connected to 150 K Ohm variable resistors or potentiometers. The variable resistance between each input and the +5 volt supply is used in a one-shot timing cireuil. As the resistance on an input yaries, the timing characteristics of its corresponding timing circuit change accordingly. Machine language programs can sense the changes in the timing loops and obtain a numerical value corresponding to the position of the potentiometer.

Before a program can start to read the setting of a potentiometer, it must first reset the timing circuits, Location number 49264 (-16272 or hexadecimal SC070) does just this. When you reset the timing circuits, the values contained in the four locations 49252 through 49255 (-16284 through -1628) or \$C664 through \$C667) become greater than 128 (their high bits are set). Within 3,060 milliseconds, the values contained in these four locations should drop below 128. The exact time it takes for each location to drop in value is directly proportional to the setuing of the game paddle associated with that location. If the potentiometers connected to the analog. inputs have a greater resistance than 150 K Ohms, or there are no potentiometers connected, then the values in the game controller focations may never drop to zero.

STROBE OUTPUT

There is an additional mutput, called C C 4 高 STROBE, which is normally +5 volts but will drop to zero volts for a duration of one-half microsecond under the control of a machine language or BASIC program. You can trigger this "strobe" by referring 10 location number 49216 (-16320 or SC04F), Be aware that if you perform a "write" operation to this location, you will trigger the strobe τ wice (see a description of this phenomenon in the section on the Speaker).

VARIETIES OF APPLES

There are a few variations on the batic Apple II computer. Some of the variations are revisions or modifications of the computer itself; others are changes to its operating software. These are the basic viriations:

AUTOSTART ROM / MONITOR ROM

All Apple It Plus Systens include the Aurostart Monitor ROM. All other Apple systems do not conain the Autostart ROM, but instead have the Apple System Monitor ROM. This versisn of the ROM lacks some of the features present in the Autostart ROM, but also has some features which are not present in thai ROM. The main differences in the two ROMs are listed on the following pages.

[^10]- Editing Controls. The ESC-I, J, K, and M sequences, which move the cursor up, left, right, and down, respectively, are not available in the Old Monitor ROM.
- Stop-List. The Siop-List reature (invoked by a CTRLS S), which allows you to inlroduce a pause into the output of most BASIC or machine languge prograns or listings, is not available in the Old Monitor ROM
- The RESET cycle. When you first furn on yout Apple or press RESET the Old Monitor ROM will send you directly into the Apple System Monttor, instead of initiating a warm or cold start as dercribed in "The RESET Cycie" on page 36.

The Old Montor ROM does, however, support the STEP and TRACE debugging features of the System Monitor, described on page 51. The Autostart ROM does not recognize thesse Monitor commands.

REVISION $\emptyset /$ REVISION 1 BOARD

The Revision A Apple II board lacks a few featares found on the current Revision I version of the Apple II main board. To determine which verston of the main board is in your Apple, open the case and look at the upper right-hand comer of the board. Compare what you see to Photo 4 on page 10. If your Apple does not have the single metal video connector pin between the fourpin video connector und the video adjustment potentiometer, then you have a Revision \emptyset Apple:

The differences between the Revision Ø and Revision I Appies are summatized below:

- Color Killer. When the Apple's Video Display is in Text mode, the Revision \emptyset Apple bourd leaves the color burst signal active on the video outpul circtit. This causes text characters to appear tinted or with colored fringes.
- Power-on RESET. Revision Q Apple boards have no circuit to automatically initiate a RESET cycle when you turn the power an. Instead, you must press RESET once to start using your Apple.

Also, when you turn on the power to an Apple with a Revision board, the keyboard will become active, as if you had typed a random character. When the Apple starts looking for input, it will accept this random character as if you had typed it In order to erase this characte, you should press CTRL X after you RESET your Apple when you turn on its powen

- Colors in High-Resolution Graphics. Apples with Revision Ø boards can generate only four colors in the High-Resolution Graphics mode: black, white, violet, and green. The high bit of each byte displayed on the Hi-Res screen (sec page 19) is ignored.
- 24K Memory Map problem. Systems with a Revision Ø Apple II board which contain 20K or 24 K byles of RAM memory appear to BASIC to have more memory than they sctually do, See "Memory Organization", page 72 , for a description of this problem.
- 50 Hz Apples. The Reviston \emptyset Apple II board does not have the pads and jumpers which you can cut and solder to convert the VIDEO OUT signai of your Apple to conform to the European PAL/SECAM television standard. It also tacks the third VIDEO connector, the single metal pin in front of the fout-pin video connector.
- Speaker and Cassette Interference. On Apples with Revision Ø boards, any sound generated by the internal speaker will also appear as a signal on the Cassette Interfice's OUT connector. If you leave the tape recorder in RECORD mode, then any sound generated by the internal speaker will also appear on the tape recording.
- Cassette Input. The input circuit for the Cassetie Interface has been modified so that it will respond with more accuracy to a weaker input signal.

POWER SUPPLY CHANGES

In addition, some Apples have a version of the Apple Power Supply which will accept only a 110 volt power line input. These are are not equipped with the voltage selector switch on the back of the supply.

THE APPLE II PLUS

The Apple It Plus is a standard Apple It computer with a Revision I board, an Autostart Monitor ROM, and the Applesoft II BASIC language in ROM in lieu of Apple Integer BASIC. European models of the Apple II Plus are equipped witt a $110 / 220$ volt power supply. The Apple Mini-Assembler, the Floating-Point Package, and the SWEET-I6 interpreter, stored in the Integer BASIC ROMs, are not ayailable on the Apple II Plus.

CHAPTER 2 CONVERSATION WITH APPLES

```
30) STANDARDOUTPUT
30) THE SLOPMIST FEATURE
31 BUT SOFT WHLAT LIGET JIROUGH YONDER WINOOW GREAKS!
IOR, THIE TEXT WINDOWI
32 SEEING IT ALL IN BLACK AND WUUTE
32 STANDARDINPUT
32 KDKEY
3 GETIN
34 ESCAPE EODES
36 THE RESET CYCLE
36 NUIOSTART ROM RESET
37 AUTOSTART ROM SPECIAL LOOATIONS
38 "OLD MONJTOR" ROM RESET
```

Almost every program and language on the Apple needs some sort of input from the keyboard, and some way to primt information on the screen. There is a set of subroutines stored in the Apple's ROM memory which handle most of the standard input and output from atl programs and languages on the Apple.

The subroutines in the Apple's ROM which perform these input and output functions are called by various names. These numes were given to the subroutines by their authors when they were written. The Apple itself does not recognize or remember the names of its own machine tanguage subroutines, but it's convenient for us to call these subroutines by their given names.

STANDARD OUTPUT

The standard output subroutine is called COUT. COUT will display upper-case letters, numbers, and symbols on the sereen in enther Normal or Inverse mode. It will ignore control efturacters except RETURN, the belf character, the line reed character, and the backspace character.

The COUT subroatine maintans its own invisible "output cursor"* (the position at which the next character is to be placed). Each time COUT is called, it places one character on the screen at the current cursor position, replacing whatever chandeter was there, and moves the cursor one space to the right. If the cursor is bumped off the right edge of the screen, then COUT shifls the cursor down to the first pasition on the next line. If the cursor passes the bottom line of the screen, the screen "scrolls" up one line and the cursor is set to the first position on the newly blank boutom line.

When a RETURN character is sent to COUT, it moves the cursor to the first position of the next line. If the cursor falls off the bottom of the screen, the screen scrolls ats described above,

THE STOP-LIST FEATURE

When iny program of language sends a RETURN code to COUT. COUT will take a quick peek at the keyboard. If you have typed a CTRLS since the last time COUT looked at the keyboard, then it will stop and wait for you to press another key. This is called the Srop-List feature** When you press another key. COUT will then output the RETURN code and proceed with normal output. The code of the key which you press to end the Stop-List mode is ignored unless it is a CTRL. C. If if is, then COUT passes this character code back to the program or language which is sending output. This aflows you io terminate a BASIC program or listing by typing (CTRL C while you are in Stop-List mode.

A line feed character causes COUT 10 move its mythical ourput cursor down one line withoul any horizontal motion at ail. As always, moving beyond the bottom of the screen causes the screen to scrolf and the cursor remains at its same position on a fresh bottom line.

A backspace character moves the imaginary cursor one space to the left. If the cursor is bumped off the left edge. It is reset to the righmost position on the previous line. If there is no previous line (if the cursor was at the top of the screen), the screen does nor seroll downwards, but instead

[^11]the cursor is plated again at the rightmost position on the top line of the screen.
When COUT is sent at "bell" character (CTRL Gi), it does not change the screen at all, but instead produces a lone from the speaker. The tone has a frequency of 100 Hz and lusts for $1 / 10$ th of a second. The oufput eursor does not move for a bell character.

BUT SOFT, WHAT LIGHT THROUGH YONDER WINDOW BREAKS!

(OR, THE TEXT WINDOW)

In the above discussions of the various motions of the output cursor, the words "right", "left". "top", and "botom" mean the physical right, left, top, and botom of the standard 40-character wide by 24 -tine tall screen. There is, however, a way to tell the COUT subroutine that you want it to use only a section of the screen, and not the entire 960 -charicter display. This segregated section of the rext screen is called a "window". A program or language can sot the positions of the top, bottom, leff side, and width of the text windaw by storing those positions in four locations in memory. When this is done, the COUT subroutitie will use the new positions to calcatate the size of the screen. It will never print any text outside of this window, and when it must scroll the sceeen, it will only scroll the text within the window. This gives programs the power to control the placement of text, and to protect areas of the screen from being overwritten with new text.

Location number 32 thexadecimal 520) in memary holds the column position of the lefimost columin in the window. This position is hormally posinion 0 for the extreme left side of the screen. This number should never exceed 39 (hexadecimal $\$ 27$), the leftmost column on the lext screen. Location number 33 (hexadecimal $\$ 21$ hotas the width. in columns, of the cursor window. This number is normully 40 (hexadecimal $\$ 28$) for a full 40 -character screen. Be careful that the sum of the window width and the leftmost window position does nol exceed 40: If it does, it is possible for COUT to place characters in memory locations not on the sereen, endangering your programs and data.

Location 34 (hexadecimal $\$ 22$) centains the number of the lop line of the text window, This is also normally 0 . indicaling the copmost line of the display. Location 35 (hexadecimal $\$ 23$) holds the number of the botum line of the screen (ptus one). Thus normally 24 (hexadecimat \$18) for the bottommoss line of the screen. When you change the text window, you should take wre that you know the whereabouts of the output cursor, and that it will be inside the new window.

Table 11: Text Window Special Locations				
Function:	Location: Decimal	Hex	Minimun Decimal	Normal/Maximum Vafue Hex
Leff Edge	32	\$20	0/6/39	50/\$0/517
Width	33	\$21	$0 / 4 \emptyset / 40$	56/528/\$28
Top Edge	34	\$22	0/0/24	S0/50/518
Bottom Edge	35	523	0/24/24	50/\$18/\$18

SEEING IT ALL IN BLACK AND WHITE

The COUT subroutine has the power to print what's sent to it in either Normal or Inverse text modes (see page 14). The particular form of its output is determined by the contents of location number 50 (hexadecimal \$32). If this location contains the value 255 (hexadecimal \$FF), then COUT will print characters in Normal mode; if the value is 63 (hexadecial \$3F), then COUT will present its display in Inverse mode. Note that this mode change only affects the characters printed after the change has been made. Other values, when stored in location 50 , do unusual things: the value 127 prints letters in Flashing mode, but alt other characters in Inverse, any other value in location 50 will cause COUT to ignore some or all of its normat character set.

Table 12: Normal/Inverse Control Values		
Value: Decimal	Hex	Effect:
255	SFF	COUT will display characters in Normal mode.
63	53F	COUT will display characters in Inverse mode.
127	57 F	COUT will display letters in Flashing mode, all other cbaracters in Inverse mode.

The Normal/Inverse "mask" location, as it is called, works by performing a logical "AND" between the bits contained in location 50 and the bits in each outgoing character code. Every bit in location 50 which is a logical "zero" will force the corresponding bit in the character code to become "zero" also, regardless of its former setting. Thus, when location 50 contains 63 (hexadecimal S3F or binary Øø111111), the top two bits of every output character code will be turned "off". This will place characters on the screen whose codes are all between 0 and 63 . As you can see from the ASCII Screen Character Code table (Table 7 on page 15), all of these characters are in Inverse mode.

STANDARD INPUT

There are actually two subroutines which are concerned with the gathering of standard input: RDKEY, which fetches a single keystroke from the keyboard, and GETLN, which accumulates a number of keystrokes into a chunk of information called an inpai line.

RDKEY

The primary function of the RDKEY subroutine is to wail for the user to press a key on the keyboard, and then report back to the program which called it with the code for the key which was pressed. But while it does this, RDKEY also performs two other helpful tasks:
1). Inpui Prompting. When RDKEY is activated, the first thing it does is make visible the hidden output cursor. This accomplishes two things: it reminds the user that the Apple is waiting for a key to be pressed, and it also associates the input it wants with a particular place on the sereen. In most cases, the input prompt appears near a word or phrase describing what is being requested by the particular program or language currently in use. The input cursor itself is a flashing representation of whatever character was at the position of the output cursor, Usually this is the blank character, so the input cursor most often appears to be a flashing square.

When the user presses a key, RDKEY dutifully removes the input cursor and returns the value of the key which was pressed to the program which requested it. Remember that the output cursor is just a position on the screen, but the input cursor is a flashing character on the screen. They usually move in tandem and are rarely separated from each other, but when the input cursor disappears, the output cursor is still uctive.
2). Random Namber Sceding. While in waits for the user to press a key, RDKEY is continually adding 1 to a pair of numbers in memory. When a key is finally pressed, these two locations together represent a number from b to 65,535 , the exact value of which is quite unpredictable, Many programs and languages use this number as the base of a random number generator. The two locations which are randomized during RDKEY are numbers 78 and 79 (hexadecimal $\$ 4 \mathrm{E}$ and $\$ 4 \mathrm{E}$).

GETLN

The vast majority of input to the Apple is gathered into chunks called inpui lines. The subroutine in the Apple's ROM called GETLN requests an input line from the keyboard, and after getting one, returns to the program which called it. GETLN has many features and nuances, and it is good to be familiar with the services it offers.

When called, GETLN first prints a prompring character; or "prompt". The prompt helps you to identify which program has called GETLN requesting input. A prompt character of an asterisk (6) represents the System Monifor, a right caret ($>$) indicates Apple Integer BASIC, a right bracket (1) is the prompt for Applesoft II BASIC, and an exclamation point (!) is the hallmark of the Apple Mini-Assembler. In addition, the question-mark prompt (?) is used by many programs and languages to indicate that a user program is requesting input. From your (the user's) point of view, the Apple simply prints a prompt and displays an input cursor. As you type, the characters you type are printed on the screen and the cursor moves accordingly. When you press RETURN, the entire line is sent off to the program or language you are talking to, and you get another prompl.

Actually, what really happens is that after the prompt is printed. GETLN calls RDKEY, which displays an input cursor. When RDKEY returns with a keycode, GETLN stores that keycode in an input buffer and prints it on the screen where the input cursor was. It then calls RDKEY again, This continues until the user presses RETURN. When GETLN receives a RETURN code from the keyboard, in slicks the RETURN code at the end of the input buffer, slears the remainder of the screen line the inpat cursor was on, and sends the RETURN code to COUT (see above). GETLN then returns to the program which called it. The program or language which requested input may now look at the entire line, all at once, as saved in the input buffer.

At any lime while you are typing a line, you can type a CTRL X and cancel that entire line. GETLN will simply forget everything you have typed, print a backslash ($)$, skip to a new line, and display another prompt, allowing you to retype the line. Also, GETLN can handle a maximum of 255 characters in a line. If you exceed this limit, GETLN will cancel the entire line and you must start over. To warn you that you are approaching the limit, GETLN will sound a tome every keypress starting with the 249 th character.

GETLN also allows you to edit and modify the line you are typing in order to correct simple typographical errors. A quick introduction to the standard editing functions and the use of the two arfow keys, \square and \square, appears on pages $28-29$ and 53-55 of the Apple II BASIC Programming Manual, or on pages 27-28, 52-53 and Appendix C of The Applesoft Tutorial, at least one

THE BACKSPACE（ \square ）KEY

Each press of the backspace key makes GETLN＂forget＂one previous character in the input line， It also sends a backspace character to COU／T（see above），making the cursor move back to the character which was deleted．Al this point，a character typed on the keyboard will replace the deleted character both on the screen and in the input line．Multiple backspaces will delete succes－ sive characters；however，if you backspace over more characters than you have typed，GETLN will forget the entire line and issue another prompt．

THE RETYPE（ $⿴ 囗 ⿱ 一 一$ ）KEY

Pressing the retype key has exactly the same effect as typing the character which is under the cur－ sor．This is extremly useful for re－entering the remainder of a line which you have backspaced over to correct a typographical error．In conjunction with mare cursor moves（which foltow），it is also useful for recopying and editing data which is already on the screen．

ESCAPE CODES

When you press the key marked ESC on the keyboard，the Apple＇s input subroutines go into escape mode．In this mode，eleven keys have separate meanings，called＂escape codes＂．When you press one of these eleven keys，the Apple will perform the function associated with that key． Affer it has performed the function，the Apple will either continue or terminate escape mode， depending upon whief escape code was performed．If you press any key in escape mode which is not an escape code，then that keypress will be ignored and escape mode will be terminated．

The Apple recognizes eleven escape codes，eight of which are pure cursor noves，which simply move the cursot without altering the screen or the input line，and three of which are sceeen clear codes，which simply blank part of all of the sereen．All of the screen clear codes and the first four pure cursor moves（escape codes＠A．B，C，D，E，and F）terminate the escape mode after operating．The final four estape codes（I，K，M．and J）complete their functions with escape mode active．＂

ESC A A press of the ESC key followed by a press of the A key will move the cursor one space to the right without changing the input line．This is useful for skipping over unwanted eharacters in an input line：simply baekspace back over the unwanted characters，press ESC A to skip each offending symbol，and use the retype key to re－enter the remainder of the line．

ESC［B］Pressing ESC followed by［Bl moves the cursor back one space，also without disturbing the input line．This may be used to enter something twice on the same line without retyping it：just type it once，press ESC \mathbf{B} tepeatedly to get back to the beginning of the phrase，and use the retype key to enter it again

[^12]［ESC］［C］The key sequence ESC］［C］moves the cursor one line directly down，with no horizontal movement，If the cursor reaches the botlom of the lext window，then the cursor remains on the bottom line and the text in the window serolls up one line．The input line is not modified by the $[$ ESC［ \mathbb{C} sequence．This，and $\mathbb{E S C}$ D（below），are useful for positioning the cursor at the begiming of another lime on the screen，so that it may be re－entered with the relype key．

ESC（D）The ESC D sequence moves the cursor directly up one line，ugain without any horizon－ tal movement．If the cursor reaches the top of the window，it stays there．The input line remains urmodified．This sequence is useful for moving the cursor to a previous line on the sereen so that it may be re－entered with the retype key

ESC E The ESC［ \mathbb{E} sequence is called＂clear to end of line＂．When COUT detects this sequence of keypresses，It clears the remainder of the screen line（ner the inpul line！） from the cursor position to the right edge of the lext window．The carsor remains where it is，and the input line is unmodified．［ESC］E always clears the rest of the line to blank spaces．regardiess of the setting of the Normal／Inverse mode（ocation（see above）．

ESC F This sequence is catled＂clear to end of screen＂t．It does just that it elears everything in the window below or to the right of the cursor．As befores，the eursor does not move and the imput line is not modiffed．This is useful for erasing random garbage on a clut－ tered screen after a lot of cursor moyes and edtiting．

ESC（⿴囗口（1）ESC Sequence is called＂home and clear＂，It clears the entipe window and places the cursor in the upper left－hand corner．The sereen is cleared to blank spaces， regardless of the setting of the Normul／Inverse location，and the input line is not changed（note that＂国＂is SHIFT P），

ESC K These four escape codes are synonyms for the four pure cursor moves given above． ESC J When these four escape codes finish their respective functions，they do not turn off the ESC M escape mode；you can continue typing these escape codes and moving the cursor around ESC 1 the screen until you press any key other than another escape code．These four keys ure placed in a＂directional keypad＂arrangement，so that the direction of each key from the center of the keypad corresponds to the direction which that escape code moves the cur－ sor．

Figure 4．Cursor－moving Escape Codes．

THE RESET CYCLE

When you turn your Apple's power switch on' or press and release the RESET key, the Apple's 6502 microprocessor intitates a RESET sycle. It begins by jumping into a subroutine in the Apple's Monitor ROM In the two different versions of this ROM, the Monitor ROM and the Autostari ROM, the RESET cycle does very different things,

AUTOSTART ROM RESET

Apples with the Autostart ROM begin their RESET eycles by flipping the soff switches which control the video screen to display the full primary page of Text mode, with Low-Resolution Graphics muxed mode lurking behind the veit of text. It then opens the text window to its full size, drops the output cursor to the bottom of the screen, and sets Normal video mode. Then it sets the COUT and KEYIN switches to use the Apple's internal keyboard and vided display as the standard input and outpu! devices. It flips annunciators 0 and 1 ON and annunciators 2 and 3 OFF on the Game I/O connector, clears the keyboard strobe, uurns off any active 1/O Expansion ROM (see page 84), and sounds a "beep!",

These actions are performed every time you press and release the RESET key on your Apple. At this point, the Autostart ROM peeks into two special locations in memory to see if it's been RESET before or if the Apple has just been powered up (these special locations are described below). If the Apple has just been turned on, then the Autostart ROM performs a "cold star!"; otherwise, it does a "warm start".

1) Cold Start. On a freshly activared Apple, the RESET cycle continues by elearing the screen and displaying "APPLE II" top and center. It then sets up the special focations in memory to tell itself that it's been powered up and RESET. Then it starts looking through the rightmost seven slots in your Apple's backplane, looking for a Disk Il Controller Card. It starts the search with Slot 7 and continues down to Slot 1, If it finds a disk controtler card, then it proceeds to bootsirap the Apple Disk Operating System (DOS) from the diskette in the disk drive attached to the controller card it discovered. You can find a description of the disk bootstrapping procedore in Do's and Don'ts of DOS, Apple part number A2L0012, page 11.

If the Autostart ROM cannot lind a Disk II controller card, or you press RESET again before the disk booting procedore has completed, then the RESET cycle will continue with a "lukewarm start". It wilt initialize and jump into the language which is installed in ROM on your Apple. For a Revision \& Apple, either without an Applesoft 11 Firmware card or with such a card with fis contfolling switch in the DOWN position, the Autostart ROM will start Apple Integer BASIC. For Apple II-Plus systems, or Revision \emptyset Apple IIs with the Applesof II Firmware card with the switch in the UP position, the Autostart ROM will begin Applesoff II Floating-Point BASIC.
2) Warm Start. If you have an Autostarl ROM which has already performed a cold start cycle, then each lime you press and release the RESET key, you will be returned to the language you were using, with your program and variables intact.

[^13]
AUTOSTART ROM SPECIAL LOCATIONS

The three "special locations" used by the Autostart ROM all reside in an area of RAM memory reserved for such system functions, Following is a table of the special locations used by the Autostart ROM:

Table 13: Autostart ROM Special Locations		
Location: Decimal	Hex	Contents:
$\begin{aligned} & 1010 \\ & 1011 \end{aligned}$	$\begin{aligned} & \$ 3 F 2 \\ & \$ 3 \mathrm{~F} 3 \end{aligned}$	Soft Entry Vector. These two locations contain the address of the reentry point for whatever language is in use. Normally contains \$E003.
1012	\$3F4	Power-Up Byte. Normally contains $\$ 45$. See below.
$\begin{aligned} & 64367 \\ & (-1169) \end{aligned}$	\$FB6F	This is the beginning of a machine language subroutine which sets up the power-up location.

When the Apple is powered up, the Autostart ROM pluces a special value in the power-up location. This value is the Exclusive-OR of the value contained in location 1011 with the constant value 165. For example, if location 1011 contains 224 (its normal value), then the power-up value will be:

	Decimal	Hex	Binary
Location 1011	224	SED	11100906
Constant	165	\$A5	10100101
Power-Up Value	69	\$45	01000101

Your programs can change the soft entry vector, so that when you press RESET you will go to some program other than a langunge. If you change this soft entry vector, however, you should make sure that you set the value of the power-up byte to the Exclusive-OR of the high part of your new soft entry vector with the constant decimal 165 (hexadecimal \$A5). If you do not set this power-up value, then the next time you press RESET the Autostart ROM will believe that the Apple has just been furned on and it will do another cold start.

For example, you can change the soft entry vector to point to the Apple System Monitor, so that when you press RESET you will be placed into the Monitor. To make this change, you must place the address of the beginning of the Monitor into the two soft entry vector locations. The Monitor begins at location \$FF69, or decimal 65385. Put the last two hexadecimal digits of this address ($\$ 69$) into location $\$ 3$ F2 and the first two digits (SFF) into location \$3F3. If you are working in decimat, put 105 (which is the remainder of $65385 / 256$) into location 1010 and the value 255 (which is the integer quotient of $65385 / 256$) into location 1011 .

Now you must set up the power-up location: There is a machine-danguage subroutine in the Autostart ROM which wil automatically set the value of this location to the Exclusive-OR mentioned above. Al you need to do is to execute a JSR (Jump to SubRoutine) instruction to the address $\$$ FB6F. If you are working in BASIC, you should perform a CALL -1169. Now everything is set, and the next time you press RESET, you will enter the System Monitor.

To make the RESET key work in its usual way, just restore the values in the soft entry vector to their former values (SE003, or decimal 57347) and again call the subroutine described above.

"OLD MONITOR" ROM RESET

A RESET sycle in the Apple il Monitor ROM begins by sening Normal vidoo mode, a full screen of Primary Page text with the Color Graphies mixed mode behind it, a fully-opened text window, and the Apple's standard keyboard and viden sercen as the slandard inpui and output devices. It sounds a "beep"", the cursor leups to the brotom line of the uncleared text screen, and you find yourseff facing an asterisk (+) prompt and talking to the Apple System Monitor.

CHAPTER 3

 THE SYSTEM MONITOR40 ENTERING JHE MONITOR
44) ADDRESSES $A N$ NIS ISATA
41 EXMMININE TUAF CONTENTS OF MEMORX
-1 EXAMINING SOME MOIRE MEMORY
4.3 EXXMINNG STIL L MORE MEMORI
4,3 CHANGING TITE CONTENTS OF A LIC NIGON
d d CHANetNR. THECONTENTS AF EONSECOTIVE LOCATIONS
A4 MOVINE, A. RANGE OF MEMORY
th COMPARING, TWI R ANGES OF MEMORY
to SAVING A RANGE OF MLMORT ONT APE
th READINE A KANUE fRGMI LAFI
is CREATINO NNO RUNMLNG MACITNE L NNGLIAGE PROGRAMS
49 THE MINI ASSEMBLER
SI DEBUTGIRG PROGR-MMS
53 EXAMININE ANE CHIANCING REGISTERS
5f MESCEI INETJUS MUNITOR COMMANDS
S5 SPECIAI TRUCRS WITII THE MONITOR
S7 CREATING TGUR GWN OMMMANGS
59 SLLMMLARY OI MONITOR TOMNIANDS
b1 SOMI USEIFI MONITITR STGROUTINES
65 MONITOR SPECINL LOCATIONS
be MINI-ASCEMBLEER INSTKGUCTGM FARMATS

Buried deep within the recesses of the Apple's ROM is a masterful program called the System Monitor. It acts as both a supervisor of the system and a slave to it; il controls all programs and all programis use it. You dan use the powerful features of the System Monitor to discover the hidden secrets in all 65,536 memory locations. From the Montor, you may look at one, some, or all locations: you may change the contents of any location: you can write programs in Machime and Assembly languages to be execuled directly by the Apple's microprocessor; you can save vast quantities of data and programs anto cassetie tape and read them back in again; you can move and compare thousatus of byles of memory with a single command, and you can ledye the Monlor and enter any other program or language on the Apple.

ENTERING THE MONITOR

The Apple System Monitor program begins af locatorinumber SFE69 (decimal 65385 or - 151) in memory, To enter the Monitor, you or your BASIC program can CALL this localton. The Monitor's prompt fun asterisk (-1) wift appear on the leff edge of the screen, with a flashing cursor to its right. The Monitor aceepts standard input lines (see page 32) just like any other system or language on the Apples. It will not take any action until you press RETURN. Your input lines 10 the Monitor may be up 10255 chafacters in length. When you have finished your stay in the Monitor, you can return to the language you were previousty using by typing CTRL C RETURN (or, with the Apple DOS, 3 [回 G RETURN), of simply press RESET?

ADDRESSES AND DATA

Talking to the Monitor is somewhat like talking to any other program or language on the Apple: you type a line on the keyboard, followed by a RETURN, and the Monitor will digest what you typed and act according to those instructions. You will be giving the Monifor three types of information: addresses, values, und commands. Addresses and values are given to the Monitor in hexadecimal notation. Hexadecimal notation uses the fen decimal digits ($\emptyset-9)$ to represent themselves and the first six letters (A-F) to represent the numbers 10 through 15 . A single hexadecimsl digit can, itherefore, have one of sixteen values from 0 to 15, A pair of hex digits can assume any value from 0 to 255 , and a group of four hex digits can denote any number from 0 to 65.536. It so happens that any uddress in the Apple can be represented by four hex digits, and any value by two hex digits. This is frow you rell the Monitor about addresses and values. When the Monitor is looking for an address, it will take any group of hex digits. If there are fewer than four digits in the group, it will prepend leading zeroes, if there are more than four hex digits, the Monitor will truncate the group and use only the last four hex digits. It follows the same procedure when looking for two-digir data values.

The Monilor recognizes 22 different command characiers. Some of these are punctuation marks. others are upper-case letters or control characters. In the following sections, the full name of a command will appear in captat letters. The Monitor needs only the first letter of the command name. Some commands are invoked with control characters. You should note that atthough the Monitor recognizes and interprets these characters, a control character typed on an input line will nor appear on the screen.

[^14]The Monitor remembers the addresses of up to five locations. Two of these are special: they ure the addresses of the last location whose value you inquired about, and the location which is next to have its value changed. These are catled the lasr opened focutom and the next changeatole lacanom. The usefolness of these two addresses will be revealed shorty

EXAMINING THE CONTENTS OF MEMORY

When you type the address of a tocation in memory alone an an input line to the Montor. if will reply" with the address you typed, a dash. a space, and the value" contained in that focation. thus:

```
- E0日G
EFHE-2M
-300
0304-99
```

Each time the Monitor displays the value contained in a location, it temembers that location as the last opened location. For technical reasons, it also considers that location as the mest changeathle locatom,

EXAMINING SOME MORE MEMORY

If you type a period 1.1 on an input line to the Monitor, followed by an address, the Monitor will display a menroy dampe the values contained in all locations from the lasi opened location to the location whose address you fyped following the period. The Monitor then considers the last tocstion displayed to be both the last opened location and the next changeable locsiton.

[^15]```
*20
H2H- Hu
*.2B
HB21-28 WU 18 UF UC UY HU
HН28- А8 Н6 DИ И7
+30|
430и-99
* 315
```



```
3日8- ИИ 㫜C8 D月 F4 A6 2B A9
035日- 09 85 27 AD CC 03
-.32A
4316-85 41
0318-84 40 8人 4人 4人 4人 4人 0.9
432-C0 85 3F 人9 5D 85 3E 20
0328-43.13 2%
```

You should notice several things ubout the format of a memory dump．First，the first line in the dump begins with the address of the location rollowoug the last opened focation；second，all other lines begin with addresses which end atternately in zeroes and eights；and third，there are nevet more than eight values displayed on a single line in a memory dump．When the Monitor does a memory dump，it stants by displaying the address and value of the focation following the last opened focation．It tifen proceeds to the next successive location in memory It the address of that location ends in un 8 or a 0 ，the Monitor will＂cut＂to a new litre and display the address of that location and continue displaying values．After it has displayed the value of the focation whose address you specified，it stops the memory damp and sets the address of both the last opened and the next changeable location to be the eddress of the last location in the dumpe：If the address speciffed on the imput line is less than the uddress of the last opened location，the Monitor will display the address and value of onfy the location following the last opened location．

You can combine the two commands（opening und dumping）into one operation by concatenating the second to the first that is，type the first address，followed by a period and the second address This twa－uddresses－separated－by－u－period formis called a memary range：

```
.300.32F
```



```
438- H0 日8 C8 D4 F4 A6 2B A9
310-49 85 27 AD CC M3 85 41
#318-84 40 8A 4A 4A 4A 4A |9
H32H- CH 85 3F A9 5D 85 3E 24
H328-43 H3 2% 46 H3 A5 30 4D
-30.40
HHZH- AA 哣 FE AA H5 C2 И5 C2
0日8- 1B FD DH U3 3C H% 4% W0
4040-34
*E015- E025
```


## EXAMINING STILL MORE MEMORY

A single press of the RETURN key will cause the Moniter to respond with one line of a memory dunp；Lhat is，a memory dump from the location Following the last opened location to the next eight－focation＂cut＂．Once again，the last location displayed is considered the last opened and next changeable focation．

```
. }
4005-40
* RETURN
HY GV
-RETURN
```



```
.32
H032-FF
* RETURN
 AA U日 C2 05 C2
+RETURN
4B8- 1B FD D| H3 3C H| 3F % %
```


## CHANGING THE CONTENTS OF A LOCATION

You＇ve heard all about the＂next changeable focation＂：now you＇re going to use it．Type a colon followed by a value．

```
*
```



```
* SF
```

Presto！The contents of the next changeable location have just been changed to the value you typed．Check this by examining that locatson again：

```
*|
|%0日- 5F
```

You can also tombine opening and shanging inta one operayon：
$+302,42$
－302
33日2－42
－

When you change the conients of a focation，the old value which was contained in that focation disappears，never to be seen again．The now value will stick around until it is replaced by another hexadecimat value．

## CHANGING THE CONTENTS OF CONSECUTIVE LOCATIONS

You don chave to type an address，a colon，a value，and press RETURN for each and every loca－ tion you wish to change．The Monitor will allow you to change the values of up to eighty－five tocarions at a time by typing onfy the intial address and colon，und then all the values separated hy spaces．The Momtor will doly file the conseculye values in consecative locations，stathing at the next changeable location．Alter it has processed the string of values，it will assume that the location following the last changed location is the next changeable location．Thus，you can con－ tinute changing consecutive tocations without breaking stride on the next input lime by typing another coloti and more values．


$$
+300
$$


－RETURN
f1 2 日 ED FD 4 C स日 $\mathrm{H}_{3}$
$-10=123$
－ 4567
$=1017$


## MOVING A RANGE OF MEMORY

You can treat a range of memory（specified by two addresses separated by a period）as an entity
unto isself and move it from one place to another in memory by using the Monitor＇s MOVE command．In order to move a ragge of memory from one place to another，the Monitor must be lold both where the range is situated in memury and where it is to be moved You give this infortmation to the Monitor in threee parts：the address of the destination of the range，the address of the first location in the tange proper，and the address of the last location in the range， You spectfy the starting and ending addresses of the range in the normal fashion．by separating them with a period．You indicite that this range is 10 be placed somewhere else by separating the range and the destination addess with a left caret（ $<$ ）．Finally，you lell the Montor that you want to moye the range to the destintlion by typine the letter M．For＂MOVE＂．The final com－ mand looks like this．

$$
\text { |destination }|<| \text { stari } \mid \text { \{end } \mid \mathrm{M}
$$

When you type this tine to the Monitor，of course，itre words in curly brackets should be teplaced by hexadecimal iddresses and the spaces should be omitted Here are some real examples of memory moves

```
0. F
```



```
anas- an an an an an an un an
.30日:A9 8D 20 ED FD A9 45 20 DA FD 4C || 03
.300.30C
03日И- A9 8D 2% ED FD A9 45 2n
03%- DA FD 4C UH H3
-0<30日 30CM
-4 C
#ด"И- A9 8D 2% ED FD A9 45 24
```



```
* 310<8 AM
*310.312
031日-DA FD 4C
* 2<7,9M
-0.C
#प月殗 A9 8D 2% DA FD A9 45 2%
WHO8- DA FD 4C H% 03
```

The Monitor smply makes a copy of the indicated range und moves it to the specified destma－ tion．The original tange is left undisturbed．The Monitor remembers the lust focation in the ori＝ ginal range as the last operted tocation，and the first location in the originat range as the next changeable lowation．If the second address in the range specification is less than the first，then only one value（that of the first location in the range）will be moved．

If the destimation address of the MOVE command is inside the original range，then strunge and （somedimes）wonderful things buppens the locations between the beginning of the range and the
destination are treated us a suh－range and the values in this sub－range are replicated thoughout the original range，See＂Special Tricks＂，page 55．For an interesting application of this feature．

## COMPARING TWO RANGES OF MEMORY

You can use the Monitor to compare two ranges of memory using much the same format as you use to move a range of memory from one place to another．In fact，the VERIFY command an be used immediately after a MOVE io make sure that the move was successful

The VERIFY command，like the MOVE command，needs a range and a destination．In shori－ hand：

$$
\text { (desimation }|<| \text { start }|:| \text { end } \mid \mathrm{V}
$$

The Monitor compares the range specified with the range beginning at the destination address．If there is any discrepancy，the Monitor displays the udderess at which the difference was found and the fwo offending values．

```
-0:D7 F2 E9 F4 F4 E5 EE AИ E2 F9 A0 C3 C4 C5
-300<0.DM
•3日め<吅DV
* 6 E4
.300<0.DV
0006-E4 (EE)
*
```

Notice that the VERIFY command，if it finds a discrepancy，displays the address of the location in the origital range whose value differs from its counterpari in the destination range．If there is no discrepancy，VERIFY displays nothing．It leaves both ranges unchanged．The last opened and next changeable locations are set just as in the MOVE command．As before，if the ending address of the range is less that the starting uddress，the values of only the first focations in the ranges will be compared．VERIFY also does unusual things if the destination is within the origi－ nal range；see＂Special Tricks＂，page 55，

## SAVING A RANGE OF MEMORY ON TAPE

The Monitor has two special commands which allow you to save a range of memory onto cussette tupe and recall it again for loter use．The first of these two commands，WRITE，lets you save the contents of one to 65，536 memory locations on standard casselte tape．

To save a range of memory to tape，give the Monitor the starting and ending addresses of the range，followed by the leter W（for WRITE）：

```
(start) (end) W
```

To get an accurate recording．you should put the tape recorder in recond mode before you press RETIRN on the input line：Let the tape run a few seconds，then press RETURN．The Monitor will write a fen－second＂leader＂tone onto the tape，followed by the data．When the Monitor is finished，it will sound a＂becpt＇and give you another prompt，You should then rewind the tape． and label the lape with something intelligible about the memory runge that＇s on the tape and what if＇s supposed to be

```
- OFF FF AD 30 CO 88 DO O4 C6
A DO FG A6 O| 4C 日2 O| 60
-0.14
HOHU-FF FF AD 3月 CH }88\mathrm{ DW H4
A日日8- C6 HI FG U8 CA DH F6 A6
HOIH- OH 4C H2 Hn 6H
-0.14W
```

It takes about 35 seconds total to save the values of 4,096 memory locations preceded by the ten－second leader onto tape，This works out to a speed of about 1,350 bits per second，average． The WRITE command writes one extra value on the lape afler it has written the values in the memory range．This extra value is the shechsum，It is the partial sum of alt values in the range． The READ subroutine uses this value（o determine if i READ has been successful tsee betow

## READING A RANGE FROM TAPE

Once you ve saved a memory range onto tape with the Montor＇s WRITE command，you can read that memory range back info the Apple by using the Monitor＇s READ command，The data values which you＇ve stored on the lape need not be read baek into the same memory range from whence they came：you can tell the Monitor to put those values into any similarly stzed memory range in the Apple＇s memory．

The format of the READ command is the same as that of the WRITE command，except that the command letter is R ，not W ：

$$
\mid \text { start } \mid \text { lend } \mid R
$$

Once sgain，atter typing the command，don＇t press RFTLRA，Instead，start the tape recorder in PLAY mode and wail for the tape＇s nonmagtetic leader to pass by Although the WRITE com－ mand puts a ten－second leader tone on the beginning of the tape，the READ command needs only three seconds of this leader in order to lock on to the frequency．So you should let a few seconds of tape go by before you press RETURN，to allow the tupe recorder＇s nutpur to settle down to a steady tone．

$$
\begin{aligned}
& \text { @ } 0 \\
& \text {-6 } 14
\end{aligned}
$$





```
*() 14R
*0 14
HWUB-FE FE AD 3H CH 88 DH H4
H日8-C6 日I F0 #8 CA DO゙ FG AG
```



After the Monitor has read in und stored all the valkes on the tape，it reads in the extra check－ sump value．It compares the checksum on the tape to its own checksum．and if the fwo differ，the Monitor beens the speaker and displays＂ERR＂．This warns you that there was ；i problemi during the READ and that the values stored in memory aren＇t the values which were recorded on the tape．If，however，the two checksums matelh，the Monitor will give you another prompt，

## CREATING AND RUNNING MACHINE LANGUAGE PROGRAMS

Machune language is cerlainly the most efficient language on the Apple，albeit the least pleasant in which to code．The Monitor has special facilities for those of you who are determined 10 use machine language kesimplity creating，writing，and debugging machine language prograns．

You can write a machire language program，take the hexadecimal yalues for the opeodes and operands，and store them in memory using the commands covered above．You can get a hexade－ cimat dump of your program，move it around in memory，or sive it to rape and recall it again simply by using the commands you＇ve already learned．The most imporuant command，however， when dealing with machine langaage programs is the GO command．When you open a location from the Monitor und type the letter G，the Monitor will cause the 6502 microprocessor to start execuing the machime language program which begins at the last opened toeation．The Monitor treats this program as a subroutine；when it＇s finished，all it need do is execule an RTS（retarn Irom subroutine）instruction and control will be iransferred back to the Monitor．

Your machine tanguage programs can call many subroutines in the Monitor to do various things． Here is an example of loading and ruming a machine language program to display the letters A through Z：

```
*300 A9 CL 20 ED FD 18 69 1 C9 DB DU F6 6И
.300.300
#30月- A9 [1 24 ED FD 18 69 日1
H38- C9 DB DH F6 6%
* 30日G
ABCDEFGHIJKLMNOPQRSTLVWXYZ
*
```

（The instruction set of the Apple＇s 6502 microprocessor is listed in Appendix A of this manual．）

Now, straight hexadecimal code isn't the easiest thing in the world to read or debug. With this in mind, the ereators of the Apple's Monitor neatly included a tommand fo list machine language programs in assambto fanguage forim. This means that instead of thuing one, two, or three bytes of unformatted hexadecimal gibberish per instruction you now have a three-lenter momonic and somie formated hexadecimal gibberish to comprehend for each instruction. The LISI command to the Monitor will slart at the specitied focation and display a screenfull (20 lines) of instructions.

|  | A9 | C1 | LDA | \#SC1 |
| :---: | :---: | :---: | :---: | :---: |
| Н342- | 2 H | ED FD | JSR | SFDED |
| 日345- | 18 |  | CLC |  |
| H346- | 69 | 41 | ADC | \#S01 |
| 6308- | C9 | DB | CMP | \#SDB |
| 6.3A- | D. | F6 | BNE | \$ 33 Hz |
| ต3ис- | 64 |  | RTS |  |
| 6300- | $\mathrm{Ha}^{4}$ |  | BRK |  |
| 630E- | (1) |  | BRK |  |
| $036 \mathrm{~F}-$ | O14 |  | BRK |  |
| n310- | -1/ |  | BRK |  |
| 6311- | H14 |  | BRK |  |
| 4312- | 14 |  | BRK |  |
| 4313- | IV |  | BRK |  |
| 6314- | U4 |  | BRK |  |
| 4315- | H0 |  | BRK |  |
| 031fi- | $\mathrm{Ha}^{\prime \prime}$ |  | BRK |  |
| 1317- | H0 |  | BRK |  |
| 8318- | 4 H |  | BRK |  |
| H319- | HH |  | BRK |  |

Recognize those first few lines'? Thes're the assembly language form of the program you typed in a page or so ago. The rest of the lines (the BRK insiructions) are just there to fill up the soreen The address that you spectfy is remembered by the Mortitor, but not in one of the Ways explaned before. It's pot in the Program Coumter, which is used solely to point to locations within programs. Alter a LIST command, the Program Counter is set to point to the location immedately following the last locationt displayed on the screen, so that if you do another LIST command it will continue whith another screenfull of instruchons. stariog where the first sereen leff off.

## THE MINI-ASSEMBLER

There is another program within the Montor* which allows you to type programs into the Apple in the same assembly formal which the LIST command displays. This program is called the Apple Mint-Assembler. It is a "mini"- itsembler kecause it cannot understund symbotic labels, something that a fulf-blown assembler must dic. To run the Minti-Assembler, sype

[^16]You are now in the Mini-Assembler. The exclamaton point (!) is the prompt character. Durng your stay in the Mini-Assembler, you car execote any Monifor comniana by preceding it with is đollar sign ( $(\mathrm{S})$ Aside from that, the Mini-Assembler has an instruetion set und symtax all its own

The Miri-Assembler remembers one address, that of the Program Counter. Before you start io enter a program, you must ses the Progrum Counter to point io the location where you want your program to go, Do this by typing the address lollowed by a colon. Follow this with the mnemonic for the first insiruction in your program, followed by a space. Now type the operind of the instruction (Formats for uperands are tisted on page 66). Now press RETLRN, The Mini-Assembler converts the line you typed into besadecimal, stores if in memory beginning at the location of the Program Counter, and then disussembles it igain and displays the disassembied line on top of your input line, It ithen poses intother prompt on the next line. Now it's ready to accept the second instruction in your program. To rell it that you want the next instruetion to follow the first, don't type an address or a colon. but only a space, followed by the next instruction's mnemunic and operand Preas RETURN. It assembles that line and wats for another.

If the fine you type has an error in it. the Mini-Assemblet will beep loudly and display a circumfex ( $)$ ) under or near the offending chatheler in the input line. Most common errors are the result of typroruphical mistakes: misspelled memenics, missing parentheses, ete The Mini-Assembler also will reject the foput line if you forget the space before or after a mnemonic or inclade an exiraneous character in a thexudecimat value or address. If the destination address of a branch insifuction is out of the tange of the brunch (more than 127 locations distant from the address of the instruationl. the Mini-Assembler wilf ulso flag this ifs an error

|  <br> 1 LDA | $80^{A 2} \cdot$ | 32 | LDX | \#882 |
| :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { H3 } 2- \\ & !\text { STA } \end{aligned}$ | $\begin{array}{r} 85 \\ 510.0 \end{array}$ |  | LDA | Su4. x |
| $\begin{aligned} & \text { O3HA- } \\ & \text { DEX } \end{aligned}$ | 95 | 10 | STA | S10, x |
| $\begin{aligned} & 3.36- \\ & ! \\ & ! \end{aligned}$ | $\begin{gathered} \mathrm{CA} \\ \operatorname{sco} 30 \end{gathered}$ |  | DEX |  |
| $\begin{aligned} & \text { 3日7- } \\ & 1 \mathrm{BPL} \end{aligned}$ | $\begin{array}{r} 80 \\ 8302 \end{array}$ | $3 \mathrm{CH}$ | STA | SCH3n |
| 13月A- <br> ! BRK |  | F6 | BPL | \$6362 |
| $0300-$ | 40 |  | BRK |  |

To exit the Mini-Assembler and re-enter the Monitor, etther press RESET or lype the Monitor
command（preceded by a dollar sign）FF69G：
1\＄FF69G

Your assembly language program is stored in memery，You can look at it again with the LIST command：
． 300 L

| A3HA－ | A2 | 16 | LDX | \＃SW2 | |
|---|---|---|---|---|---|
| H362－ | B5 | － 10 | LDA | SMA． X |
| H364－ | 95 | 10 | STA | Sin，X |
| H366－ | CA |  | DEX |  |
| 4367－ | 8 D | 3月 CA | STA | SCH 3 H |
| H36A－ | 1月 | F6 | BPL | \＄0362 |
| （130С－ | 16 |  | BRK |  |
| 6301－ | ब10 |  | BRK |  |
| А3ИE－ | 4 H |  | BRK |  |
| 430F－ | 40 |  | BRK |  |
| ＊314－ | 46 |  | BRK |  |
| 9311－ | 46 |  | BRK |  |
| 6312－ | ＊ 4 |  | BRK |  |
| 8313－ | $\\|^{\prime \prime}$ |  | BRK |  |
| 9314－ | 911 |  | BRK |  |
| 8315－ | 4 |  | BRK |  |
| 6316－ | H10 |  | BRK |  |
| 6317－ | $\mathrm{Ha}^{\text {a }}$ |  | BRK |  |
| 6318－ | H\％ |  | BRK |  |
| 月319－ | H／ |  | BRK |  |

## DEBUGGING PROGRAMS

As put so concisely by Lubarsky＂．＂There＇s always one more bug．＂Don＇t worty，the Moritor provides factities for stepping through ornery programs to lind that one last bug．The Monitor＇s STEP＊＊command decodes，displays，and execumes one instruction at a time，and the TRACE＊ command steps quickly through a program，stopping when a BRK instruction is executed．

Each STEP command causes the Monitor to execute the instruction in memory pointed to by the Program Counter．The instruction is displayed in its disassembled form，then executed．The contents of the 6502 ＇s internal registers are displayed after the instruction is executed．After exe－ cution，the Program Connter is bumped up to point to the next instruction in the program．

Here＇s what happens when you STEP through the program you entered using the Mini－ Assembler，above：

[^17]```
030日- A2H2 LDX #SV2
    A=0A }\quad\textrm{X}=02\quad\textrm{Y}=\textrm{D}8\quad\textrm{P}=3,\mp@code{S}=\textrm{F}
*S
0302- B5 L0 LDA S0W,X
    A=|C: X=02 Y=D8 P=3h S=FR
*S
#34- 95 1% STA SIG,X
    A=OC X=12 Y=08 P}=30,\textrm{S}=\textrm{F}
* 12
0112-VC
*S
4346- CA DEX
    A=0C\quadX=01 Y=08 P=3日, S=F8
*S
4307- 8D 3H CH STA SCH30
    A=0C\quadX=M1 Y=D8 P=3% S=F&
*S
H30A- 1月 F6 BPL S4302
    A=HC\quadX=1 Y=D8. P=3% S=F's
* S
13%2- B5 日% LDA SHO.X
    A=MB S=4I I F D % P=3M S=F8
*S
03H4- 95 1% STA $10,X
    A=0B\quadX=H1 1 Y =D8 P=30, S=F8
```

Notice that after the third instruction was executed，we examined the coments of location 12. They were as we expected，and so we continued stepping．The Monitor keeps the Program Counter and the last opened address separate from one unother，so that you can exumine or change the contents of memory while you are stepping through your program．

The TRACE commund is fust an intinite STEPper．It will stop TRACEung the execution of a pro－ gram only when you push RESET or it encounters a BRK instruction in the program．If the TRACE encounters the end of a program which returns to the Montor vat an RIS instruction． the TRACEing will run off into never－never land and must be stopped with the RESET buton．

```
4T
```

1346－	CA		DEX	
$A=B$	$\mathrm{X}=0$	$\mathrm{Y}=08$	$\mathrm{P}=32 \quad \mathrm{~S}=\mathrm{F} 8$	
4367－	8 D	3 H C	STA	SCH3
$A=B$	$\mathrm{X}=04$	$\mathrm{Y}=08$	$\mathrm{P}=32 \mathrm{~S}=\mathrm{F} 8$	
$434 \mathrm{~A}-$	10	F6	BPI．	S0342

$$
\mathrm{A}=\mathrm{B} \quad \mathrm{X}=\mathrm{BH} \quad \mathrm{Y}=\mathrm{DB} \quad \mathrm{P}=32 \quad \mathrm{~S}=\mathrm{F8}
$$

4342- B5 6H LDA \$日U, X

$$
\mathrm{A}=\mathrm{BA} \quad \mathrm{X}=\mathrm{BH} \quad \mathrm{Y}=\mathrm{D} 8 \quad \mathrm{P}=3 \mathrm{M} \quad \mathrm{~S}=\mathrm{FB}
$$

$$
\text { W3H4- } 9514 \text { STA SIU,X }
$$

$$
\mathrm{A}=\mathrm{HA} \quad \mathrm{x}=\mathrm{H} \quad \mathrm{Y}=\mathrm{D} 8 \quad \mathrm{P}=3 \mathrm{n} \quad \mathrm{~S}=\mathrm{E} 8
$$

H3W6- CA DEX

$$
\mathrm{A}=4 \mathrm{~A} \quad \mathrm{X}=\mathrm{FF} \quad \mathrm{Y}=\mathrm{D} 8 \quad \mathrm{P}=\mathrm{BH} \quad \mathrm{~S}=\mathrm{F} 8
$$

$$
4347-8 \mathrm{D} 3 \mathrm{CH} \mathrm{STA} \text { SCH3n }
$$

$$
\mathrm{A}=\mathrm{ZA} \quad \mathrm{X}=\mathrm{FF} \quad \mathrm{Y}=\mathrm{DB} \quad \mathrm{P}=\mathrm{BH} \quad \mathrm{~S}=\mathrm{F} 8
$$

$$
\text { H3日A- } 14 \text { F6 BPL SH3H2 }
$$

$$
\mathrm{A}=\mathrm{HA} \quad \mathrm{X}=\mathrm{FF} \quad \mathrm{Y}=\mathrm{D} 8 \quad \mathrm{P}=\mathrm{BA} \quad \mathrm{~S}=\mathrm{F} \&
$$

U3HC- Hи BRK

$$
\mathrm{H} 3 \mathrm{HC}-\quad \mathrm{A}=\mathrm{HA} \quad \mathrm{X}=\mathrm{FF} \quad \mathrm{Y}=\mathrm{D} 8 \quad \mathrm{P}=\mathrm{BH} \quad \mathrm{~S}=\mathrm{FA}
$$

EXAMINING AND CHANGING REGISTERS

As you saw ubove, the STEP and TRACE communds displayed the contents of the 6502 's triternal registers after each insiruction You can examine these registers an will or pre-set them when you TRACE, STEP. or GO a machine language program

The Monitor reserves five locations in memory for the five 6502 registers: A, X, Y. P (processor status register), and S. (stack poimer). The Momior's EXAMINE command, invoked by a [TRL. E], tells the Monitor 10 display the conterns of these locations on the sefeen, and lets the focation which foolds the 6502's. A-register be the next changeable location. If you want to change the values in these locations, just rype a colon and the values separated by apaces. Next time you give the Moniter a GO, STEP or TRACE command, the Montor will load these five locasions into their proper registers inside the 6502 before it executes the first instruction in your program

- CTRLE

$$
\begin{aligned}
& \mathrm{A}=\mathrm{BA} \quad \mathrm{X}=\mathrm{FF} \quad \mathrm{Y}=\mathrm{D} 8 \quad \mathrm{P}=\mathrm{B} \emptyset \quad \mathrm{~S}=\mathrm{F} 8 \\
& \mathrm{~B} \emptyset \emptyset 2
\end{aligned}
$$

- CTRL E

$$
\begin{aligned}
& \Lambda=\mathrm{BH} \quad \mathrm{X}=\mathrm{H} 2 \quad \mathrm{Y}=\mathrm{DB} \quad \mathrm{P}=\mathrm{BH} \quad \mathrm{~S}=\mathrm{F} 8 \\
& -3465 \\
& \text { 13H6- CA DEX } \\
& \mathrm{A}=\mathrm{BH} \quad \mathrm{X}=\mathrm{HI} \quad \mathrm{Y}=\mathrm{D} 8 \quad \mathrm{P}=3 \mathrm{~B} \quad \mathrm{~S}=\mathrm{F} 8 \\
& \text {-S }
\end{aligned}
$$

MISCELLANEOUS MONITOR COMMANDS

You can controf the setting of the Inverse/Normal location used by the COUT subroutine (see page 32) from the Monitor so that all of the Monitor's putput will be in Inverse viden. The INVERSE command does this nicely. Input lines are still displayed in Normal mode, however: To return the Monitor's oupput to Normal mode. use the NORMAL command.

```
-0. F
НИИИ- NА ИВ ИС UD ИE UF DU U4
##88- CG H1 EU O& CA DO FG AG
* I
-6. F
##GH- HA UB HC UD UE HF DU U4
8488- C6 日1 FH 08 CA D4 F6 A6
*N
-F
HGHA- MA HB HC MD NE UF DG U4
MAH8- C6 BI FO IS CA DG E6 A6
```

The BASIC command, inyoked by a CTRL B. . Tets you leave the Mopitor and enter the language installed in ROM on your Apple, usually either Apple Integer or Applesoft II BASIC. Any program or variables that you had previousty in BASIC will be lost. If you've left BAStC for the Monitor and you want to re-enter BASIC with your program and variables intact, use the CTRLC (CONTINUE BASIC) command. If you have the Apple Disk Operating System (DOS) active, the '3D日G' command will retarn you to the language you were using, with your program and variables intact.

The PRINTER command, activated by a CTRL. P, diverts all output normally destined for the sereen 10 an Apple Ituetligent Interface e in a given slot in the Apple's hackplane. The slot number should be from 1 to 7 , and there should be an interface dard in the given slot. or you will lose conteg of your Apple and your program and variables miay be lost. The format for the command is:
(sloi number) CTRL P
A PRINTER command to slol number a will reset the flow of printed output back to the Apple's video screen

The KEYBOARD command simularly substutates the device in a given backplane slot for the Apple's keyboard. For details on how these commands and their BASIC counterpatts PR \# and IN\# work, please refer 10 "CSW and KSW Switches". page 83. The format for the KEYBOARD comimand is:
(slot number) CTRL K

A stot number of \emptyset for the KEYBOARD command will force the Monitor to listen for input from the Apple's buili-in keyboard,

The Monitor will also perform simple hexadecimal addition and subtraction. Just type a line in the formal:

```
|value \(\rangle+\) |value \(\mid\)
|value - |value
```

The Apple will perform the arithmetic and display the result:

$$
\begin{aligned}
& =2 b+13 \\
& =33 \\
& =4 \mathrm{~A}-\mathrm{C} \\
& =3 \mathrm{E} \\
& =\mathrm{FE}+4 \\
& =33 \\
& =3-4 \\
& =\mathrm{FF}
\end{aligned}
$$

SPECIAL TRICKS WITH THE MONITOR

You can put as many Monitor commands on a single line as you like, as long as you separate them with spaces and the total number of characters in the line is less than 254. You can intermix any and all commands freely, except the STORE Q command. Since the Monitor takes alt values following a colon and places them in consecutive memory focations, the last value in a STORE must be followed by a letter command belore another address is encountered. The NORMAL command makes a good separator: it usually has no effect and can be used anywhere.

```
*300.307 300.18 69 I N 300.302 300S S
```



```
ดзดИ- [8 69 ИI
630h- 18 CLC
    A=h4 X=H1 }\quad\textrm{Y}=\textrm{D}8\quad\textrm{P}=30,\quad\textrm{S}=\textrm{FB
#3日I- 69 #1 ADC #S01
    A=05 X=H I Y=D8 P=3日 S=F&
*
```

Single-lettér commands such as L, S. I, and N need not be separated by spaces.
If the Monitor encounters at itharacter in the input line which it does not recogrize as either a hexadecimal digit or a valid command character, it will execute all commands on the input line up to that character, and then grind to a hait with a noisy beep, ignoring the remainder of the input line.

The MOVE command can be used to replicate a pattern of values throughout a range in memory.

Io do this，first store the pattern in its first position in the range：

```
*300 1! 22 33
```

Remember the number of values in the pattern：in this case，3．Then use this speciul arrange－ ment of the MOVE cormmand：

$$
(\text { start }+ \text { number })<\mid \text { stari } \mid \text {. } \text { (end-number }) \mathrm{M}
$$

This MOVE command will first replicate the pattern at the locations immediately following the original pattern．then re－replicate that pattern following itself，and so on until it fills the entire ringe．

```
*303<300.32DM
*30|.32F
03日日- 11 22 33 111 22 33 11 22
```



```
931日-22
```



```
432日-33 111 22 33 11 22 33 11
6328-22 33 11 22 33 111 22 33
```

A similar trick can be done with the VERIFY command to check whether a pattern repeats itself through memory．This is especially useful to verify that a given range of memory locations all contain the same value：

```
*300=0
.301<300.31FM
*301<300.31FV
*304:02
.301<300.31FV
13%3-7% (02)
43H4-42 (04)
```

You can create a command line which will repeat all or part of itself indefinitely by beginning the part of the command line which is to be repeated with a letter command，such as N ，and ending it with the sequence $34: n$ ，where n is a hexadecimal number specifying the character position of the command which begins the loop，for the first character in the line，$n=0$ ．The value for n must be followed with a space in order for the loop to work properly．
－N 30n $30234: 0$
3．3日－ 11

CREATING YOUR OWN COMMANDS

The USER（CTRL Y）command，when encountered in the input line，forces the Monitor 10 jump to location number $\$ 3 \mathrm{~F} 8$ in memory．You can put your nwn JMP instruction in this loca－ tion which wilt jump to your own program Your program cin then either examine the Monitar＇s registers and pointers or the input line itself．For example，here is a program which will make the CTRL Y command aet as a＂comment＂indicator．Everything on the input line following the CTRL Y will be displayed and ignored．
－F666G
1300－LDY $\$ 3.4$
日3Hu－A4 34 LDY \＄34
1．LDA $200 . Y$
H3H2－B9 HH H2 LDA \＄H2日日，Y
1 ISR FDED
43． 20 － 20 FD FD JSR SFDED
1 INY
93日8－C8
INY
1 CMP \＃$\$ 80$
\＃349－C9 8D CMP \＃\＄8D
\pm BNE 302
日3UB－DUF5 BNE $\$ 83 \mathrm{H}_{2}$
I JMP SFF69
430D－4C 69 FF JMP SFF69
13F8：JMP $\$ 300$
日3F8－ $4 \mathrm{CHOH3}$ JMP $\mathrm{CH} 3 日 月$

! SFF69G

- CTRLY THIS IS A TEST

THIS IS A TEST.

Examining Memory.
(adrs)
|adrs 1). |adrs2|

RETURN

Changing the Contents of Memory,
|adrsf:|val| \{vall ...

Moving and Comparing.

|dest|<|start|, (end|M
\mid desi $|<|$ stant \mid, end $\mid V$

Saving and Loading via Tape.

(stari). (end/W
(start) (lend) R

Running and Listing Programs.

fadrs/G
(adrs)L

Examines the value contained in one focation.
Displays the values contained in all locations between ladrs1) and ladrs2\}

Displays the values in up to eight locations following the last opened Incation.

Stores the values in consecutive memory locations starting at (adrs).

Stores values in memory starting at the next changeable location.

Copies the values in the range |start), (end) into the range beginning at (dest).

Compares the values in the range (start). (end) to those in the range beginning at (dest).

Writes the values in the memory range |stari|-|end) onto tape, preceded by a tensecond leader.

Reads values from tape, storing them in memory beginning at (start\} and stopping at (end). Prinis "ERR" if an erfor occurs.

Transfers control to the machine language programi beginning at (adrs).

Dissssembles and displays 20 instructions, starting at \{adrs). Subsequent L's will display 20 more instructions each.

The Mini-Assembler

F666G
Slcommand)

SFF69G
ladrst S
|adrs| T

CTRL E

Miscellaneous.

1
N
CTRL B

CIRLC

$($ val $)+($ val $)$
|val) - |yal|
|sJo! CTRL P
|siot) CTRL K

CTRL Y

Invoke the Mini-Assembler:
Exectate a Monitor command from the MiniAssembler.

Leave the Mini-Assembler,
Disussemble, display, and execute the instruction at ladrs\}, and display the contents of the 6502 's internal registers. Subsequent S 's will display and execute successive instructions,*"

Step infintely, The TRACE command stops only when it executes a BRK instruction or when you press RESET.**

Display the coments of the 6502 's registers.

Set Inverse display mode.
Set Normal display mode.
Enter the language currently installed in the Apple's ROM.

Reenter the language currently installed in the Apple's ROM.

Add the two values and print the result.
Subtract the second value from the first and print the result.

Divert outpot to the device whose interface card is in slot number (slot). If $($ slor $)=\emptyset$, then route nutput to the Apple's screen.

Accept input from the device whose interface card is in slot number (slot). If (slot $)=\emptyset$, then accept inpur from the Apple's keyboard.

Jump to the machine language subroutine at location \$3F8.

SOME USEFUL MONITOR SUBROUTINES

Here is a list of some usefif subroutines in the Apple's Monitor and Autostarl ROMs. To use these subroutines from machine fanguage programs, load the proper memory locations of 6502 registers as required by the subroutine and execule a JSR to the subroutine's starting address. It will perform the function and return with the 6502's registers set as deseribed.

SFDED COUT Output a character
COUT is the standard character output subroutine. The character to be output should be in the accumulator. COUT calls the current character output subroutine whose address is stored in CSW (locations $\$ 36$ and $\$ 37$), usually COUT1 (see below)

SFDF0 COUT1 Output to screen

COUT1 displays the character in the accumulator on the Apple's screen al the current output cursor position and adyances the output eursor. It places the character using the setting of the Normal/Inverse focation. It handles the control characters RETURN, linefeed, and belf. It returns with all registers intact.

SFESU
SETINV Set Inverse mode
Sets Inverse video mode for COUTI. All output characters will be displayed as black dots on a white background. The Y register is set io $\$ 3 \mathrm{~F}$, all others are unchanged,

SFE84 SETNORM Set Normal mode

Sets Normal video mode for COUTI. All output characters wwill be displayed as white dots on a black background. The Y register is set to SFF, all others are unchanged.

SFD8E GROUT Generate a RETURN
CROUT sends a RETURN character to the current output device.
SFD8B CROUT1 RETUR N with clear
CROUTI clears the screen from the current cursor position to the edge of the text window, then calls CROUT

SFDDA PRBYTE Print a hexadecimal byte
This subroutine outputs the contents of the diccumulator in hexadecimal on the current output device. The contents of the accumulator are serambled.

SFDE3 PRHEX Print a hexadecimal digit

This subroutine outputs the lower nybble of the accumulator as a single hexadecimal digit. The contents of the accumulator are scrambled
$\$ 5941$
PRNTAX Print A and X in hexadecimal
This outputs the contents of the A and X reisters as a four-digit hexadecimal value. The accumulator contains the first byte output, the X register contains the second. The contents of the
accumulator are usually scrambled.

\$F948 PRBLNK Print 3 spaces

Outputs three blank spaces to the standard output device. Upon exit, the accumulator usually contains $\$ A \emptyset$, the X register contains \emptyset.

\$F94A PRBL2 Print many blank spaces

This subroutine outputs from 1 to 256 blanks to the standard output device. Upon entry, the X register should contain the number of blanks to be outpuL. If $\mathrm{X}=\$ 0 \emptyset_{\text {c }}$ then PRBL2 will output 256 blanks.

\$FF3A BELL Outpot a "bell" character

This subroutine sends a bell (CTRL. G) charactet to the current output device. It leaves the accumulator holding $\$ 87$.

SFBDD BELL Beep the Apple's speaker

This subroutine beeps the Apple's speaker for 1 second at 1 KHz . It sorambles the A and X registers.

SFD日C RDKEY Get an input character

This is the standard character input subroutine. It places a flashing input cursor on the screen at the position of the outpur cursor and jumps to the current input subroutine whose address is stored in KSW (locations \$38 and \$39), usually KEYTN (see below).
\$FD35 RDCHAR Get an input character or ESC code
RDCHAR is an alternate input subroutine which gets characters from the standard input, but also interprets the eleven escape codes (see page 34),

SFDIB KEYIN Read the Apple's keyboard

This is the keyboard input subroutine. It reads the Apple's keyboard, waits for a keypress, and randomizes the random number seed (see page 32). When it gets a keypress. it removes the flashing cursor and returns with the keycode in the accumulator.

\$FD6A GETLN Get an input line with prompt

GETLN is the subroutine which gathers input lines (see page 33). Your programs can call GETLN with the proper prompt character in location \$33; GETLN will return with the input line in the input buffer (beginning al location $\$ 206$) and the X register holding the length of the input line.

SFD67 GETLNZ Get an input line
GETLNZ is an alternate entry point for GETLN which issues a carriage return to the standard output beforé lalling into GETLN (sec above).

GETLN1 is an alternate entry point for GETLN which does not issue a prompt before it gathers the input line. If, however, the user cancels the input line, either with too many backspaces or with a CTRL X, then GETLN1 will issue the contents of location $\$ 33$ as a prompt when it gets another line.

SFCA8 WAIT Delay

This subroutine delays for a specific amount of time, then relurns to the program which called it. The amount of delay is specified by the contents of the accumulator. With A the contents of the ticcumulitor, the delay is $1 / 2\left(26+27 \mathrm{~A}+5 \mathrm{~A}^{2}\right) \mu$ seconds. WAIT returns with the A register zeroed und the X and Y registers undisturbed.

SF864

 SETCOL Set Low-Res Graphics colorThis subroatine sets the color used for plotting on the Low-Res screen to the color passed in the accumulator. See page 17 for a table of Low-Res colors.

SF85F NEXTCOL Increment color by 3
This adds 3 to the current color used for Low-Res Graphics,
\$F8月日 PLOT Plot a block on the Low-Res screen
This subroutine plots a single block on the Low-Res screen of the prespecified color. The block's vertical position is passed in the accumulator, its horizontal position in the Y register. PLOT returns with the accumulator scrambled, but X and Y unmolested.
\$F819 HLINE Draw a horizontal line of blocks
This subroutine draws a horizontal line of blocks of the predetermined color on the Low-Res screen. You should call HLINE with the vertical coordinate of the line in the accumulator, the leftmost horizontal coordinate in the Y register, and the rightmost horizontal coordinate in location $\$ 2 \mathrm{C}$. HLINE returns with A and Y scrambled, X intact.

SF828 VLINE Draw a vertical line of blocks
This subroutine draws a verlical line of blocks of the predetermined color on the Law-Res screen. You should call VLINE with the horizontal coordinate of the line in the Y register, the top vertical coordinate in the accumulator, and the bottom vertical coordinate in focation \$2D. VLINE will return with the accumulator scrambled.

SF832 CLRSCR Clear the entire Low-Res screen

CLRSCR clears the entire Low-resolution Graphics screen. If you call CLRSCR while the video display is in Text mode, it will fill the screen with inverse-mode "@" chargcters. CLRSCR destroys the contents of A and Y .

SF836 CLRTOP Clear the top of the Low-Res screen
CLRTOP is the same as CLRSCR (above), except that it clears only the top 40 rows of the screen.

\$F871

This subroutine returns the color of a single block on the Low-Res sereen. Call it as you would call PLOT (above). The color of the block will be returned in the accumulator. No other regislers are changed

SFBIE PREAD Read a Game Controller

PREAD will return is number which represents the position of a game controller. You should pass the number of the game controller $(0) 3)$ in the X register. If this number is not valid. strange things may happen. PREAD relurns with a number from $\$ 0.10$ SFF in the Y register. The accumulator is scrambled.

SFF2D PRERR Print "ERR"

Sends the word "ERR", followed by a belf character. to the standard output device. The accumulator is serambled.

SFF4A IOSAVE Save all registers
The contents of the 6502's internal registers are saved in locations $\$ 45$ through $\$ 49$ in the order $\mathrm{A}-\mathrm{X}-\mathrm{Y}-\mathrm{P}-\mathrm{S}$. The contents of A and X are changed; the decimal mode is cleared.

SFF3F IOREST Restore all registers

The contents of the 6502's internal registers are loaded from locations \$45 through \$49,

MONITOR SPECIAL LOCATIONS

Addreas: Decimal	Hex	Use: Monitor ROM	Autostart ROM
$\begin{aligned} & 1008 \\ & 1009 \end{aligned}$	$\begin{aligned} & 53 \mathrm{~F} 0 \\ & 53 \mathrm{Fl} \end{aligned}$	None,	Holds the address of the subroutine which handles machine language "BRK" requests (normally SFA59)
$\begin{aligned} & 1010 \\ & 1011 \end{aligned}$	$\begin{aligned} & \$ 3 F 2 \\ & \$ 3 F 3 \end{aligned}$	None.	Soft Eniry Vector.
1012	S3F4	None.	Power-up Byte.
$\begin{aligned} & 1013 \\ & 1014 \\ & 1015 \end{aligned}$	$\begin{aligned} & \$ 3 \mathrm{FS} \\ & 53 \mathrm{~F} 6 \\ & 53 \mathrm{~F} 7 \end{aligned}$	Holds a ' JuM subroutine whic "\&" command SFF.	instruction to the handles Applesoft II Normaily \$4C $\$ 58$
$\begin{aligned} & 1016 \\ & 1017 \\ & 1018 \end{aligned}$	$\begin{aligned} & \$ 3 F 8 \\ & \$ 3 F 9 \\ & \$ 3 F A \\ & \hline \end{aligned}$	Holds a "JuM subroutine wh (CTRL Y) con	instruction to the handles *USER iunds.
$\begin{aligned} & 1019 \\ & 1020 \\ & 1021 \end{aligned}$	$\begin{aligned} & \text { S3FB } \\ & \text { S3FC } \\ & \text { S3FD } \end{aligned}$	Holds a "JuM subroutine Maskable lnter!	instruction to the handles Nonpts.
$\begin{aligned} & 1022 \\ & 1023 \end{aligned}$	$\begin{aligned} & \text { S3FE } \\ & \text { S3FF } \end{aligned}$	Holds the addt which handles	ss of the subroutine crrupt ReQuesls.

[^18]
MINI-ASSEMBLER INSTRUCTION FORMATS

The Apple Mini-Assembler recognizes 56 mnemonics and 13 addressing formats used in 6502 Assembly language programming. The monemonics are standard. as used in the MOS Technology/Synertek 6500 Programming Manual (Apple part number A2L0003). but the addressing formats are different. Here are the Apple standard address mode formats for 6502 Assembly Language:

An ladtressl consists of one or more hexadecimal digits. The Mini-Assembler interprets addresses in the same manner that the Monitor does: if an address has Jewor than four digits, if udds leading zerness if it has more than four digits, then it uses only the last four,

All dollar signs ($\$$), signifying that the addresses are in hexadecimal notation, are ignored by the Mini-Assembler and may be omited.

There is no syntactical distinction between the Absolute and Zero Page addressing modes, If you give an insiruction 10 the Mini-Assembler which can be used in both Absolute and Zero-Page mode, then the Mini-Assembler will assemble that instruction in Absolute mode if the operand for that instruction is greater than SFF, and it will assemble that instruction in Zern Page mode if the operand for that instruction is less than $\$ 0100$.

Instructions with the Accumulator and Implied addressing modes need no operind.
Brunch instructions, which use the Relative addressing mode, require the target address of the branch. The Min-Assembler will sutomatically figure out the relative distance to use in the insiruction. If the turget address is more than 127 locations distant from the instruction, then the Mini-Assembler wil sound a "beep", place a circumfex (") under the larget address, and ignore the line.

If you give the Mimi-Assembler the mnemonic for an instruction and an operand, and the addressing mode of the operand cannot be used with the instruction you entered, then the MiniAssembler will not accept the line.

CHAPTER 4 MEMORY ORGANIZATION

65 RAM STORAGE
73) RAM CONFIGURATION BLOCKS

72 ROM ATORAGE
73 I/OLOCATIONS
TA CEROPAGE MEMORY MAPS

The Apple's 6502 mictoprocessor can directly reference a total of 65,536 distinct memory locations, You can think of the Apple"s memory as a book with 256 "pages", with 256 memory locations on each page. For example, "page $\$ 3 b^{*}$ is the 256 memory locations beginning at location $\$ 3000$ and ending at Jocation $\$ 30$ FF Since the 6502 uses two eight-bit bytes to form the address of any memory location, you can think of one of the bytes as the page number and the other as the lacation wwhin the page,

The Apple's 256 pages of memory fall into three categories: Random Access Memory (RAM), Read-Only Memory (ROM), and Inpui/Output locations (1/O). Different areas of memory are dedicated to different functions. The Apple's basie memory map looks like this:

Figure 5. System Memory Map

RAM STORAGE

The area in the Apple's memory map which is allocated for RAM memory begins at the bottom
of Page Zero and extends up to the end of Page 191. The Apple has the capacity to house from $4 \mathrm{~K}(4,096$ bytes) 1048 K (49,152 bytes) of RAM on its main circuir board. In addition, you can expand the RAM memory of your Apple all the way up to 64 K (65.536 bytes) by instating ant Apple Language Card (part number A2B0006). This extra 16 K of RAM takes the place of the Apple's ROM memory, with two 4 K segments of RAM sharing the 4 K range from SD0日 to SDFEF

Most of your Apple's RAM memory is available to you for the storage of programs and data The Apple, however. does reserve some locations in RAM for use of the System Monitor, various languages, and other system functions. Herd is at map of the available areas in RAM memory:

Following is a breakdown of which ranges are assigned to which functions:
Zero Page. Due to the construction of the Apple's 6502 microprocessor, the luwermost page in the Applets memory is prime real estate for machine language programs. The System Monitor uses about 20 locations on Page Zero; Apple Integer BASIC uses a [ew more; and Applesofi II BASIC and the Apple Disk Operating System use the rest. Tables 18, 19, 20, and 21 show the locations on zero page which are used by these sysfem functions.

Page One. The Apple's 6502 microprocessor reserves all 256 bytes of Page 1 for use as a "stack". Even though the Apple usualfy uses less than half of this page at any one time, it is nol easy to determine just what is being used and what is tying fatlow, so you shouldn't try to use

Page I to store any data,
Page Two. The GETLN subroutine, which is used to get input lines by most programs and languages, uses Page 2 as its input buffer. If you're sure that you won't be typing any long input lines, then you can (somewhat) safely store temporary data in the upper regions of Page 2.

Page Three. The Apple's Monitor ROM (both the Aatostart and the ofiginal) use the upper sixieen locations in Page Three, from location \$3F0 to \$3FF (decimal 1008 to 1023), The Monitor's use of these locations is outlined on page 62.

Pages Four through Seven. This 1,024 -byte range of memory locations is used for the Text and Low-Resolution Graptics Primary Page display, and is therefore unusable for storage purposes. There are 64 locations in this range which are nol displayed on the screen. These 64 locations are reserved for use by the peripheral cards (see page 82).

RAM CONFIGURATION BLOCKS

The Apple's RAM memory is composed of eight to 24 integrated circuits. These IC's reside in three rows of sockets on the Apple board. Fach row can hold eight chips of erther the 4.096-bit (4 K) or 16,384 -bit (16 K) variely. The 4 K RAM ctups are of the Mostek " 4096 ." family, and may be marked "MK4096" or "MCM6604". The 16 K chips are of the " 4116 " type, and may have the denomination "MK4116" or "UPD4160". Each row must have eight of the same type of chip, although different rows may hold different types.

A row of eight 16 K [C's represents 16,384 eight-bit byles of RAM. The leftmost IC in a row represents the fowermost (least significant) bit of every byte in that range, and the rightmost IC in a row represents the uppermost (most significant) bit of every byte. The row of RAM IC's which is frontmost on the Apple board holds the RAM memory which begins at location in the memory map; the next row back continues where the first left off.

You can tell the Apple how much memory it has, and of what type it is, by plugging Memory Confrguration Blocks into three IC sockets on the left side of the Apple board. These configuration blocks are three 14 -legged critters which look like big, boxy integrated circaits. But there are no chips inside of them; only three jumper wires in each. The jumper wires "strap" each row of RAM chips into a specific place in the Apple's memory map. All three configuration blocks sthould be strapped the same way. Apple supplies several types of standard configuration blocks for the most common system sizes. A set of these was installed in your Apple when it was built, and you get a new set each time you purchase additional memory for your Apple, If, however, you want to expand your Apple's memory with some RAM chips that you did not purchase from Apple, you may have to construct your own configuration blocks (or modify the ones already in your Apple).

There are nine different RAM memory configurations possible in your Apple. These nine memory sizes are made up from various combinations of 4 K and 16 K RAM chips in the three rows of sockels in your Apple. The nine memory configurations are:

Figure 6. Memory Configurations
Of the Fourteen "legs" on each controller block, the three in the upper-right corner (looking at it from above) represent the three rows of RAM chips on the Applets main board. There should be a wire jumper from each one of these pins to another pin in the configuration block. The "other pin" corresponds to a place in the Apple's memory map where you want the RAM chips in each row to reside. The pins on the configuration block are represented thus:

4 K range Sumbl-S0FFF	10	14	Frontmost row (${ }^{\prime \prime} \mathrm{C}$ ")
4 K range \$1906-\$1FFF	2	13	Middle row (${ }^{\text {D }}$ ")
4 K range $52000-\$ 2 \mathrm{FFF}$	3	12	Backmost row ("E.)
4 K range 53006.83 FFF	1	11	No connection.
4 K range $54060-54 \mathrm{FFF}$	5	10	
4 K range $\$ 5$ bub- 55 FFF	6	9	16 K range $\$ 4006-87 \mathrm{PFF}$
4 K range S8.06-S8FFF	7	8	16 K range $\$ 8060-$ SBFFF

Figure 7. Memory Configuration Block Pinouts

If a row contains eight chips of the 16 K variety, then you should connect a jumper wire from the pin corresponding to that row to a pin corresponding to a 16 K range of memory. Similarly, if a row contains eight 4 K chips, you should connect a jumper wire from the pin for that row to a pin corresponding to a 4 K range of memory, You should never put 4 K chips in a row strapped for 16 K , or vice versa. It is also not adyisable to leave a row unstrapped, or to strap two rows into the same range of memory

You should always make sure that there is some kind of memory beginning at location \emptyset. Your Apple's memory should be in one contiguous block, but it does not need to be. For example, if you have only three sets of 4 K chips, but you want to use the primary page of the High-

Resolution Graphics mode，then you would strap one row of 4 K chips to the beginning of memory（ 4 K range $\$$ bøø日 through $\$$ bFFF），and strap the other wo rows to the memory range used by the High－Resolution Graphics primary page（ 4 K fanges $\$ 2000$ through $\$ 2 \mathrm{FFF}$ and $\$ 3060$ through \＄3FFF）．This will give you 4 K bytes of RAM memory to work with，and 8 K bytes of RAM to be used as a picture buffer．

Notice that the contiguration blocks are installed into the Apple with theit front edges（the edge with the white dot，representing pin 1）towards the front of the Apple，

There is a problem in Apples with Revision Ø boards and 20 K or 24 K of RAM．In these systems， the 8 K range of the memory map from $\$ 400$ to $\$ 5 \mathrm{FFF}$ is duplicated in the memory range $\$ 606$ to S7FFF，tegardless of whether if contains RAM or not．So systems with anly 20 K or 24 K of RAM would appear to have 24 K or 36 K ，but this extra RAM would be only imaginary．This has been changed in the Revision 1 Apple boards．

ROM STORAGE

The Apple，in its natural state，can hold from $2 \mathrm{~K} \quad(2.048$ bytes）to $12 \mathrm{~K} \quad 12.288$ bytes）of Read－ Only memory on its main board．This ROM memory can include the System Monitor，a couple of dialects of the BASIC language，various system and utility programs，or pre－packaged subroutines such as are included in Apple＇s Progranmer＇s Aid \＃ 1 ROM．

The Apple＇s ROM memory resides in the top 12 K （ 48 pages）of the memory map，beginning at location \＄D日日日．For proper operation of the Apple，there must be some kind of ROM in the uppermosi locations of memory．When you turn on the Apple＇s power supply，the microproces－ sor must have some program to execute．It goes to the top locations in the memory map for the address of this program．In the Apple，this address is stored in ROM，and is the address of a pro－ gram within the same ROM．This program initializes the Apple and lets you start to use it．（For a description of the startup cycle，see＂The RESET Cycle＂，page 36．）

Here is a map of the Apple＇s ROM memory，and of the programs and packages that Apple currently supports in ROM：

Table 17：ROM Organization and Usage		
Page Number：	Used By：	
208 SD®		$\begin{gathered} \text { Applesoft } \\ \text { II } \\ \text { BASIC } \end{gathered}$
212 SD4	Programmer＇s Aid \＃I	
216 SD8		
220 SDC		
228 SE4		
232 \＄E8	Integer BASIC	
236 SEC		
240 \＄F0		
244 SF4	Urility Subroutines	
$\begin{array}{ll} 248 & \mathrm{SF8} \\ 252 & \mathrm{SFC} \end{array}$	Monitor ROM	Autostart ROM

Six 24-pin IC sockets on the Apple's board holf the ROM integrated circuits. Each sockel can hold one of a type 931682.048 -byte by 8 -bit Read-Only Memory. The leftmost ROM in the Apple's bourd holds the upper 2 K of ROM in the Apple's memory map: the rightmost ROM IC holds the ROM memory beginning at page SD \emptyset in the memory map. It a ROM is nol present in a given sockel, then the values contained in the memory range corresponding to that socket will be unpredictable

The Apple Firmware card can disable some or all of the ROMs on the Apple board, and substitute its own ROMs in their place. When you have an Apple Firmware card installed in any slot in The Apple's board, you can disable the Apple's on-board ROMs by flipping the card's controller switch to its UP position and pressing and releasing the RESE:T button, or by referencing location SC080 (decimal 49280 or -16256). To enable the Apple's on-board ROMs again. flip the controller switch to the DOWN position and press RESET, or reference location SC081 (decimal 49281 or -16255). For more information, see Appendix A of the Applesoft II BASIC Programming Reference Manual.

I/O LOCATIONS

4,096 memory locations (16 pages) of the Apple's memory map are dedicated to input and output functions. This 4 K range begins at location SC0ba (decimal 49152 or -16384) and extends on up to location SCFFF (decimal 53247 or -12289). Since these functions are somewhat intricate, they have been given a chapter all to themselves. Please see Chapter 5 for information on the allocation of Input/Outpur locations.

ZERO PAGE MEMORY MAPS

Table 18: Monitor Zero Page Usage																
Decimal	\square	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Hex	S0	\$1	\$2	\$3	\$4	\$5	\$6	\$7	\$8	\$9	\$ ${ }^{\text {a }}$	SB	\$C	SD	SE	SF
0 50n																
16 S10																
$32 \quad 520$	\bullet	-	\bullet	-	-	-	-	-	-	-	-	-	-	-	-	
$48 \quad 530$	-	-	-	\bullet	-	-	-	-	-	-	\bullet	-	-	-	-	-
64540	-	-	-	-	-	-	-	-	-	-					\bullet	-
80 S50	-	\bullet	\bullet	-	-	-										
96.560																
112 \$79																
128 \$80																
144 \$90																
160 \$AØ																
176 SB \varnothing																
192 SCU																
208 SDØ																
224 SE0																
240 SFV																

Table 19: Applesofi II BASIC Zero Page Usage

Decimal		\square	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
	Hex	50	\$1	\$2	\$3	54	\$5	\$6	\$7	\$8	\$9	SA	\$B-	SC	SD	SE	SF
\emptyset	500	-	-	-	-	-	-					-	-	-	-	-	-
16	510	-	-	-	-	-	-	-	-	-							
32	\$20																
48	530																
64	540																
80	550	-	-	-	-	-	-	-	-	-	-	*	-	-	\bullet	-	-
96	S60	-	-	-	-	-	-	-	-	-	-	*	-	-	\bullet	-	-
112	\$76	-	-	-	-	-	-	-	-	-	-	*	-	-	-	-	-
128	\$80	-	-	-	-	-	-	-	-	-	-	-	-	\bullet	-	-	-
144	\$90	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
160	\$ $A \emptyset$	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
176	\$B6	-	-	-	-	*	-	-	-	-	-	-	-	*		-	\bullet
192	SCD	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
208	SD®	\bullet	-	-	-	*	-			-	-	-	-	-	-	-	\bullet
224	SED	-	-	-		-	-	-	-	\bullet	-	\bullet					
240	SF®	-	-	-	-	-	-	-	-	-							

CHAPTER 5 INPUT/OUTPUT STRUCTURE

78. BUILT-INT/O
74 PERIPHERAL BOARD 1/O
80 PERIPHLERAL CARD I/O SPACE
80 PERIPIIERAL CARD ROM SPACE:
81 LO PROGRAMMING SLIGGESTIONS
82 PERIPHERAL SLOT SERATCHPAD RAM
83 TIE CSW/KSW SWITCHES
84 EXPANSION ROM

The Apple's Inpul and Oupput functions fall into two basic categories: those functions which are performed on the Apple's board itself, and thasse functions which are performed by peripheral interface cards plugged into the Apple's eight peripheral "slots". Both of these functions communicate to the microprocessor and your programs via 4.096 locations in the Apple's memory map. This chapter describes the memory mapping and operation of the various input and output controls and functions, the hardware which executes these functions is described in the nexi chapler.

BUILT-IN I/O

Most of the Apple's inherent 1/O facinties are described briefly in Chapter 1. "Appronching your Apple" - For a short description of these facilities, please see that chapter.

The Apple's on-board 1/O functions are controlled by 128 memory locations in the Apple's memory map, beginning at location SC060 and extending up through location SC07F (decimal 49152 through 49279, or -16384 through -16257). Twenty-seven different functions share these 128 locations. Obviously, some functions are uffected by more than one location: in some instances, as many us sixteen different locations all can perform exactiy the same function. These 128 locations fall into five types: Data Inpuis, Strobes, Soft Switches, Toggle Switches, and Flag Inputs.

Data Inputs. The only Data Input on the Apple board is a iocation whose value represents the current state of the Apple's huilt-in keyboard. The uppermost bit of this input is akin to the Flag Inputs (see below); the lower seven bits are the ASCII code of the key which was most recently pressed on the keyboard.

Flag Inputs. Most built-in input locations on the Apple are single-bit 'flags'. These flags appear in the highest (eighti) bit position in their respective memory locations. Flags have only two values: 'on' und 'off'. The setling of a flag can be tested easily from any language A higherlevel language can use a "PEEK" or similar command to read the value of a flay location: if the PEEKed value is greater than or equal to 128, then the flag is on; if the value is less than 128 , the flag is off. Machine language programs can load the contents of a llag location into one of the 6502° s internal registers (or use the BIT instruction) and bratnch depending upon the setting of the N (sign) flag. A BMI instruction will cause a branch if the flag is on, and a BPL instruction will cause a brunch if the flag is off.

The Single-Bit (Pushbutton) inputs, the Cassette inpul. the Keybourd Strobe, and the Game Controller inputs are all of this type.

Strobe Outputs. The Utility Strobe, the Clear Keyboard Sirobe, and the Game Controller Strobe are all controlled by memory locations. If your program reads the contents of one of these locations, then the function associated with that location will be activated. In the case of the Utility Strobe, pin 5 on the Game 1/O eonneclor will drop from +5 volts to 0 volts for a period of 98 microseconds, then rise back to +5 again: in the case of the Keyboard Strobe, the Keyboard's flag input (see above) will be turned off; and in the case of the Game Coniroller Strobe, all of the flag inputs of the Game Controllers will be turned off and their timing loops restarted.

Your program can aiso trigger the Keyboard and Game Controller Strobes by writing to their controlling locations, but you should not write to the Utility Strobe location. If you do, you will produce two 98 microsecond pulses, about 24.43 nanoseconds apart. This is due to the method in which the 6502 writes to a memory location: first it reads the contents of that location, then it

Writes over them. This double pulse will go unnoticed for the Keyboard and Game Controller Strobes, hut may cause problems if it appeary on the Utility Strobe.

Toggle Switches. Two other strobe outputs are connected internally to two-state "flip-flops" Each time you read from the location associated with the strobe, its flip-flop will "toggle" to its other state. These toggle switches drive the Cassette Output and the internal Speaker. There is no practical way to determine the setting of an internal toggle switch. Because of the nature of the loggle swigches, you should only read from their controlling locations, and not write to them (see Strobe Outputs, above)

Soft Switches Soft Switches are iwo-position switches in which each side of the switch is conirolled by an individual momory location. If you reference the location for one side of the switch, It will throw the switch that way; if you reference the location for the oher side, it will throw the switch the oither way. It sets the switch without regard to its former setuing, and there is no way io detormine the positoon a soll switch is in. You can safely write to soff swifeh conirolling locations: iwo pulses are as good as one (see Strobe Outputs, ubove). The Annunciator outputs and all of the Video mode selections are controlled by solf switehes.

The special memory locations which control the builf-in Inpui and Output functions are arranged thus:

Table 22: Buitt-In 1/O Locations

		\$1	\$2	\$3	54	55	\$6	\$7	88	59	\$A	SB	SC SD	SE SF
Scunn	Keybnard Data Input													
SCOIQ	Clear Keyboard Stiobe													
SCW20	Cassette Output Toggle													
SCO36	Speaker Toggle													
5 SC 40	Utility Strobe													
SC050	gr	is	nomux	mix	pi ${ }^{\text {i }}$	sec	tores	hires	แท\|		unt		312	an3
SC060	cm	pbI	p62	pb3	[56	gal	$4 \leq 2$	gc^{3}			repen	at sca	4.5C46?	
SCO70	Game Controller Strobe													

Key to abbreviations:

gr	Sel GRAPHICS mode	Ix	Sef TEXT mode
nomarx	Sel all lexl or graphics	mix	Mix text and graphics
pti	Display primary page	see	Display secondary page
lores	Display Low-Res Graphics	hires	Display Hi-Res Graphics

an Annuriciator outputs ph Pushbutton inputs
ge Game Controller inputs cin Cassette Input

PERIPHERAL BOARD I/O

Along the back of the Apple"s main board is a row of eight long "slots", or Peripheral Connectors. Into seven of these eight slots, you can plug any of many Peripheral Interface boards designed especially for the Apple, In order to make the peripherat cards simpter and more versatile, the Apple's circuitry has allocated a total of 280 byte locations in the memory map for each
of seven slots. There is also a 2 K byte "common area", which all peripheral cards in your Apple can share.

Each slot on the board is individually numbered, with the leftmost slot called "Slot g" and the rightmost called "Slot 7 ". Slot \emptyset is special: it is meant for RAM, ROM, or Interface expansion, All other slots (1 through 7) have special control lines going to them which are active at different tímes for different stots.

PERIPHERAL CARD I/O SPACE

Each slot is given sixteen locations beginning at location \$C080 for general input and output purposes. For slot \emptyset, these sixteen locations fall in the memory range \$C080 through SC08F. for slot 1, they're in the range SC690 through 5C09F, ef cetera. Each perjpheral card can use these locations us it pleases, Each peripheral card can determine when it is being selected by listening to pin 41 (called DEVICE SELECT) on its peripheral connector. Whenever the voltage on this pin drops to 0 volts, the address which the microprocessor is calling is somewhere in that peripheral card's 16 -byte aflocation. The peripheral card can then look at the bottom four address lines to determine which of its sixteen uddresses is being culled.

Table 23: Peripheral Card I/O Locations															
	\$0 \$1	\$2	83	\$4	\$5	\$6	\$7	\$8	\$9	\$ A	\$B	SC	SD	SE	SF
SC08									\emptyset						
SC690									1						
SCDAO									2						
SC口ВИ			Inpui	Oulput	for	ot nu	ber		3						
SCacy									4						
SCaDa									5						
SCDEO									6						
SCOFO									7						

PERIPHERAL CARD ROM SPACE

Each peripheral slot also has reserved for it one 256 -byte page of memory. This page is usually used to house 256 bytes of ROM or Programmable ROM (PROM) memory, which contains driving programs or subroutines for the peripheral card In this way, the peripheral interface cards can be "intelligent"? they contain their own driving software; you do not need to load separate programs in order to use the interface cards.

The page of memory reserved for each peripheral slot has the page number $\$ \mathrm{C} n$, where n is the slot number. Slot Ø does not have a page reserved for it, so you cannot use most Apple interface cards in that slot. The signal on Pin 1 (called D/O SELECT) of each peripheral slot will become active (drop from +5 volis to ground) when the microprocessor is referencing an address within that slot's reserved page. Peripheral eards can use this signal to enable their PROMs, and use the lower eight address lines to address each byte in the PROM

I/O PROGRAMMING SUGGESTIONS

The programs in peripheral card PROMs should be portable; that is, they should be able to function correctly regardless of where they are placed in the Apple's memory map. They should contain no absolute references to themselves. They should perform all JuMPs with conditional or forced brunches.

Of course, you can fill a peripheral card PROM with subroutines which are not portable, and your only loss would be that the peripheral card would be slot-dependent. If you're cramped for space in a peripheral card PROM. you can save many bytes by making the subroutines slot-dependent

The first thing that a stibroutine in a peripheral card PROM should do is to save the values of all of the 6502's internal registers. There is a subroutine called IOSAVE in the Apple's Munitor ROM which does just this. It saves the contents of all internal registers in memory locations $\$ 45$ through $\$ 49$, in the order A-X-Y-P-S. This subroutine starts at location \$FF4A. A companion subroutine, called IORESTORE, restores all of the internal registers from these storage locations. You should call this subroutine, located at SFF3F, before your PROM subroutine finishes,

Most single-character input and output is passed in the 6502^{\prime} s Accumulator During output, the character to be displayed is in the Accumulator, with its high bit sel During input, your subroutine should pass the character received from the input device in the Accumulator, also with its high bit set.

A program in a peripheral card's PROM can determine which slot the card is plugged into by executing this sequence of insiructions:

0300-	20	4 A	EF	JSR	SFF4A
0303-	78			SEI	
0304-	20	58	FF.	JSR	\$FF58
0367 -	BA			TSX	
0308-	BD	00	01	LDA	\$0100, x
0308 -	8 D	F8	07	STA	\$07F8
030E-	29	0 F		AND	\#S0F
0310 -	A8			TAY	

After a program executes these steps, the slot number which its card is in will be stored in the 6502 's Y index register in the format $\mathrm{S} \emptyset n$, where n is the slot number. A program in the ROM can further process this value by shiffing it four bils to the left, to obtain $\$$ inb.

$$
\text { 0311- } 98 \text { TYA }
$$

$0312-$	AA	ASL
$0313-$	A	ASL
$6314-$	A	ASL
$0315-$	A	ASL
$0316-$	AA	TAX

A program can use this number in the X index register with the 6502 's indexed addressing mode to refer to the sixteen $1 / 0$ locations reserved for each card. For example, the instruction

$$
\text { 0317. BD } 80 \mathrm{C} 日 \text { LDA } \operatorname{SC0} 80, \mathrm{x}
$$

will load the 6502's accumulator with the contents of the first 1/O location used by the peripheral card. The address SCb a is the base address for the first location used by all eight peripheral slots. The inddress \$Cas1 is the base address for the second $1 / 0$ tacation, and so on. Here are the base addresses for ull sixteen $1 / O$ locations on each card:

Base								
Address	\emptyset	1	2	3	4	5	6	7
Scasa	Scasa	$5 \mathrm{CO90}$	SCDAD	SC0B0	SCaCa	SCUD	SCAEA	SCOFD
SC081	SC081	\$C091	SCOAL	SCabi	SCaCl	SCuD1	SCUE1	SCbFl
SCO8 2	SC082	\$C092	SCDAZ	SC0B2	SCaC2	SCAD2	SCUE2	5 COF 2
SC083	SC083	\$C093	SCDA3	5C0B3	Scac3	SC0D3	SCDE3	5 CaF 3
SC084	SC084	\$C094	$5 \mathrm{COA4}$	$5 \mathrm{CaB4}$	Scact	Sc0D4	SCDE 4	5 SCDF 4
SC085	SC085	\$C095	SC0A5	SC0B5	scucs	Scuds	SCUE5	SCOFS
\$C086	SC086	\$C096	Scuab	SC0B6	\$C0C6	SC0D6	SCDEG	SCOF6
\$C087	SC087	SC697	SC0A7	SCDB7	SCaC7	SC0D7	SCDE 7	SCOF7
SC088	SC088	SC698	SC0A8	SCиB8	\$cacs	SCaD8	SCDES	SCDF8
SC089	SC089	SC099	SCDA9	Scob9	SC0C9	SCuD9	SCOEP	SCOF9
SC08A	$5 \mathrm{CD8A}$	SC09A	SCDAA	SCOBA	SCOCA	\$CИDA	SCUEA	SCUFA
SC08B	SC08B	SC098	SCDAB	SCOBB	SC0CB	\$CODB	SCMEB	SC0FB
5 Sc 8 C	5 Casc	SC09C	SCDAC	SCOBC	SCaCC	SCODC	SCDEC	SCOFC
SCASD	SC08D	SC09D	SCOAD	SCOBD	Scacd	SCUDD	\$CDED	SCDED
SCOSE	SCOSE	SCD9E	SCDAE	SCDBE	SCACE	SCODE	SCDEE	SCDFE
Scosf	\$C08F	5 CO 9 F	SCDAF	SCOBF 1/O L	SCDCF cations	SCODF	SCOEF	SCaFF

PERIPHERAL SLOT SCRATCHPAD RAM

Each of the eight peripheral slots has reserved for it 8 locations in the Apple's RAM memory, These 64 locations are actually in memory pages $\$ 04$ through $\$ 07$, inside the area reserved tor the Text and Low-Resolution Graphics video display. The contents of these focations, however, are nor displayed on the screen, and their contents are not changed by normal screen operations.* The peripheral cards can use these locations for temporary storage of data while the curds are in operation. These "scruchpad" locations bave the following addresses:

[^19]
Table 26: 1/O Scratchpad RAM Addresses

$\begin{gathered} \text { Base } \\ \text { Address } \end{gathered}$	Slol Number						
	1	2	3	4	5	6	7
50478	50479	5047A	\$047B	5047 C	5047D	S047E	5647F
564F8	$504 \mathrm{F9}$	S 64 FA	\$04FB	564 FC	504FD	S64FE	S04FF
56578	50579	S657A	5057B	\$057C	\$657D	S057E	S057F
50578	\$05F9	SØ5FA	505FB	\$05FC	\$05FD	SØSFE	S05FF
50678	\$0679	\$067A	5067B	\$067C	5067D	\$067E	\$067F
S66F8	\$06F9	\$06FA	506FB	\$06FC	506FD	\$06FE	\$06FF
S0778	\$ 8779	\$077A	5077 B	\$077C	S077D	\$077E	S077F
S07F8	\$07E9	\$07FA	507 FB	\$07FC	S07FD	\$07FE	\$ 67 FF

Stot Ødoes not have any scratchpad RAM addresses reserved for it. The Base Address locations are used by Apple DOS 3.2 and are also shared by all peripheral cards. Some of these locations have dedicated functions: location S7F8 tholds the stot number (in the format $\mathrm{SC} n$) of the peripheral card which is currently attive, and location S5F8 holds the slat number of the disk controller card from which any active DOS was booted.

By using the stot number $\$$ §ln, derived in the program example ubove, is subroutine can directly reference any of is eight scratchpad locations:

1A.	B9	78	$n 4$	1DA	50478.Y
4310.	99	F8	0.4	STA	504 FB , Y
0320.	B9	78	05	LDA	$50578 . \mathrm{Y}$
0323.	99	F8	05	STA	505F8, Y
0326.	B9	78	06	1DA	50678, Y
0329.	99	F8	06	STA	S06F8, Y
032 C .	B9	78		LDA	S0778 Y Y
032 E .	99	F8	07	STA	S07F8.Y

THE CSW/KSW SWITCHES

The pair of locations $\$ 36$ and $\$ 37$ (decimal 54 and 55) is called CSW, for "Character pulput SWitch", Individually, location $\$ 36$ is called CSWL (CSW Low) and location $\$ 37$ is called CSWH (CSW High). This pair of locations holds the address of the subroutine which the Apple is currently using for single-character output. This address is normally SFDFØ, the uddress of the COUT subroutine (see page 30). The Monitor's PRINTER (CTRLP) command, and the BASIC command PR\#, can change this address to be the address of a subroutine in a PROM on a peripheral card. Both of these commands put the address SC, mbe into this pair of focations. where n is the slot number given in the command. This is the address of the first focation in whatever PROM happens to be on the peripheral card plugged into that slot. The Apple will then call this subroutine every time it wishes to output one character. This subroutine can use the instruction sequences given above to find its slot number and use the I/O and RAM scratchpad locations for its slot. When it is finished, il can either execute an RTS (ReTurn from Subroutine) instruction, to return to the program or language which is sending the output, or it can jump to the COUT subroutine at location SFDFD, to display the character on the screen and then return to the program which is producing output.

Similarly, locations $\$ 38$ and 39 (décimal 56 and 57), called KSWL and KSWH separately or KSW
(Keyboard input SWitch) logether, hold the address of the subroutine the Apple is currenily using for single-character input. This address is normally SFD1B, the address of the KEYIN subroutine. The Monitor's KEYBOARD command (CTRL K) and the BASIC command IN\# both change this address to SCo0日, itgain with n the slot number given in the command. The Apple will call the subroutine at the beginaing of the PROM on the peripheral eard in this slot whenever it wishes to get a single character from the inpui device. The subroutine should place the input character into the 6502 's accumblator and ReTurn from Subroutine (RTS) The subroutine should set the high bit of the character before it returns.

The subroutines in a peripheral card's PROM can change the addresses in the CSW and KSW switches to point to places in the PROM other than the very beginning. For example, at certain PROM could begin with a segment of code to determine what slot it is in and do some initualization. and then jump in to the actual character handling subroutine. As part of its initialization sequence, it could change KSW or CSW (whichever is applicable) to point directly to the beginning of the character handling subroutine. Then the next time the Apple asks for input or output from that card, the handling subroutines will skip the already-done initialization sequence and go right in to the lask at hand. This can save time in speed-sensitive situations,

A peripheral card can he used for both input and output if its PROM has seperate subroutines for the separate functions und changes CSW and KSW accordingly. The initialization sequence in a peripheral card PROM can determine if it is being called for imput or output by looking at the high parts of the CSW und KSW switches. Whichever switch contains SCIn is currently calling that card to perform its function. If both switches contain $\$ \mathrm{C}$ n. then your subroutine should assume that it is being called for output.

EXPANSION ROM

The 2 K memory range from location SCSD日 to SCFFF is reserved for a 2 K ROM or PROM on a peripheral card, to hold' large programs or driving subroutines. The expansion ROM space also has the advantage of being absolutely located in the Apple's memory map, which gives you more freedom in writing your interface programs.

This PROM space is available 10 all peripheral slots, and more than one eard in your Apple can have an expansion ROM. However, only one expansion ROM san be active at one time.

Each peripheral card's expansion ROM shoutd have a flip-flop to enable it. This flip-flop should be turned "on"t by the DEVICE SELECT signal the one which enables the 256 -byte PROM). This means that the expansion ROM on any card will be partially enabled after you first reference the card it is on. The other enable to the expansion ROM should be the I/O STROBE line, pin 20 on each peripheral connector. This line becomes active whenever the Apple's microprocessor is referencing 4 location inside the expansion ROM's domain. When this line becomes active, and the aforementioned flip-flop has been turned "on", then the Apple is referencing the expansion ROM on this particulat board (see figure 8).

A peripheral card's 256 -byte PROM can gain sole actess to the expansion ROM space by referring to location SCFFF in its initialization subroutine. This location is a special location, and all peripheral cards should recognize it as a signal to turn their flip-flops "of " ${ }^{\text {" }}$ and disable their expansion ROMs. Of course, this will also disable the expansion ROM on the card which is irying to grab the ROM space, but the ROM will be enabled again when the microprocessor gets another instruction from the 256 -byte driving PROM. Now the expansion ROM is enabled, and its space is clear. The driving subroutines can then jump directly into the programs in the ROM, where

Figure 8. Expansion ROM Enable Circuit
they can enjoy the 2 K of unobstructed, absolutely located memory space:

$$
\begin{array}{llll}
0332- & 2 \mathrm{CFF} \text { CF } & \text { BIT } & \text { SCFFF } \\
0335- & 4 \mathrm{C} \emptyset \mathrm{C} 8 & 1 \mathrm{MP} & \text { SC800 }
\end{array}
$$

It is possible to suve circuitry (at the expense of ROM space) on the peripheral card by not fully decoding the special location address, SCFFF, In fact. If you can afford to lose the last 256 bytes of your ROM space, the following simple circuit will do just line:

Figure 9. SCFXX Decoding

CHAPTER 6 HARDWARE CONFIGURATION

88	IIIE MICROPIREVESSSOR
90	SVSTEM FIMTNC
92	PCWER SUPPLY
94	ROM MEMORS
45	RAM MFMOKY
46	THE VIDRO CFENEX ATOR
97	VITEE GUTMUT JACKS
98	BUILT-PN 1 MO
94	"HSER \| SLMPER
180	IUL GAME I/D CONNECTOR
109	THE KEYBOAPD
102	KEYROARI CONNECTCR
103	CASSETIE INTERFACE IACKS
104	PCOWER CONNECTUR
105	SPEAKZR
105	FRERIPHERAL CONNECTITRS

THE MICROPROCESSOR

The 6542 Microprocessor	
Moudel:	MCS6502/8Y6502
Manulactured by:	MOS Technology, Ine. Synertek Rockwell
Number of instructions:	56
Addressing modes:	13
Accumulators:	$1(\mathrm{~A})$
Index registers:	$2(\mathrm{X}, \mathrm{Y})$
Other registers:	Stack pointer (S) Processor stalus (P)
Stack:	256 bytes. fixed
Status fliges:	N (signi) C (earry) V (everflow)
Other flags:	1 (Interrupt disable) D (Decimal arithmetic) B (Break)
Intertupts:	2 (IRQ, NMI)
Resets:	1 (RES)
Addressing range;	$2^{16}(64 \mathrm{~K})$ locations
Address bus:	16 bits, parallel
Data bus:	8 bits, parallel Bidirectional
Voltages	+5 volis
Power dissipation:	.25 watt
Clock frequency:	1.023 MHz

The micropracessor gets its main timing signils, $\mathbf{~} \boldsymbol{6}$ and $\Phi 1$. from the timing circuts described below. These are complimentary 1.023 MHz clock signuis. Variows manuals, including the MOS

Figure 10. The Apple Main Board

Technology Hardware manual, use the designation \$2 for the Apple's \$ø clock.
The mieroprocessor u5es its address and data buses only during the time poriod when $\$ 4$ is active, When $\$ 0$ is low, the microprocessor is doing internal operitions and doss not need the data and addess buses

The microprocessor has a 16 -bit address hus and an 8 -bit bidirectional data bus, The Address bus lines are buffered by three \$T97 three-state buffers in board locations H3, H4, and H5. The address lines are held open only during a DMA cycle, and are active at att other limes. The address on the address bus becomes vilid abour 300ns after $\$ 1$ goes high and remains valid Throught all of $\phi \theta$

The data bus is buffered through iwo 8T28 bidirectional threc-state buffers at board locations H 10 and IIII. Dath from the microprocessor is put onto the bus about 300 ns after कl and the READ/WRITE signal ($\mathrm{R} / \overline{\mathrm{W}}$) both drop to pero, At att outher fimes, the microprocessor is either listening to or ignoring the data bus,

The RDY, $\overline{\text { RES }}, \overline{\text { IRQ, }}$, and $\overline{\text { NMI }}$ lines to the micruprocessor are all held high by 33 K Ohmi resisrors $60+5 \mathrm{v}$. Thuse lines also uppear on the peripheral connectors (see page 105).

The SET OVERFLOW (SO) line to the microprocessor is permanently thed to ground.

SYSTEM TIMING

Table 27: Timing Signal Descriptions	
14M	Master Oscillator oulput, 14.318 MHz All timing signals are derived from this signal.
7M	Intermediate timing signul, 7.159 MHz .
COLOR REE	Color reference frequency, 3.580 MHz . Used by the videa generation circuitry:
\$0 (\$2)	Phase 0 system clock, 1.023 MHz . compliment to 4 T ,
क 4 :	Phase I system clock, 1.023 MHz , compliment to Φ D.
Q3:	A general-purnose timing signal. twice the frequency of the syslem clocks. but asymmetrical

All peripheral conneclors get the timing signals 7 M , $\Phi 0$, $\Phi 1$, and $Q 3$ The timing signals I4M and COLOR REF are not ayailable on the peripheral connecters.

Figure 11. Timing Signals and Relationships

The Apple Power Supply (U, S. Patent \#4,130,862)	
Input voltage:	107 VAC 10132 VAC , or 214 VAC to 264 VAC (switch selectable*)
Supply voltages:	$\begin{aligned} & +5.0 \\ & +11.8 \\ & -12.0 \\ & -5.2 \end{aligned}$
Power Consumption:	60 wats max. (full foad) 79 watts max. (intermitrent**)
Full load power output:	$\begin{aligned} & +5 v: 2.5 \mathrm{amp} \\ & -5 v .250 \mathrm{ma} \\ & +12 \mathrm{v}: 1.5 \mathrm{amp}(-2.5 \mathrm{amp} \text { intermitteni**) } \\ & -12 v: 250 \mathrm{ma} \end{aligned}$
Operating temperature:	55 c (131 ${ }^{\circ}$ Farenheit)

The Apple Power Supply is a high-voltage "switching" power supply. While most other power supplies use a large transformer with many windings to convert the input voltage into many lesser voltages and then rectify and regulate these lesser voltages, the Apple power suppty first converts the AC line voltage into a DC voltage, and then uses this DC voltage to drive a high-frequency oscillator. The output of this oscillator is fed into a small iransformer with many windings. The voliages on the secondary windings are then regulated to become the oulput voltages.

The +5 volt output voltage is compared 10 a ieference voltage, and the difference error is fed back imo the oscillator circuit. When the power supply's outpul starts to move out of its folerances, the frequency of the oscillitor is uttered and the voltages return to their normal levels.

If by chance one of the output voltages of the power supply is shorl-circuited, a Peedback circuit in the power supply stops the oscillator and cuts aft output arcuits. The power supply then pauses for about $1 / 2$ second and ithen attempts to restart the oscillations. If the ourput is still shorted, it will stop and wait again Ir will continue this cycle until the shorl circuit is removed or the power is lurned off

If the output connector of the power supply is disconnected from the Apple board, the power supply will notice this "no load" condition und effectively short-circuit itself. This achivates ithe protection circuits described above, and cuts all power output. This prevents damage to the power supply's internals.

[^20]

Figure 12. Power Supply Schematic Drawing

If one of the output volages leaves its volerance range, due to any problem either within or external to the power supply, it will again shot itself down to prevent damage to the components on the Apple board. This insures that ilt voltages witt elther be correct and in proportion, or they will be shur off

When one of the above fault conditions occurs, the internal protection circuits will slop the ascillations which drive the transformer. After a shont while, the power supply will perform a restart cycle, und atempt to oscillate again. If the fault condition has not been temoved, the supply witt again shut down. This cycle can continue infinitely without damage to the power supply. Each time the oscillator shuts down and restarts, its frequeney passes through the aodible range und you can hear the power supply squeal and squeak. Thus, when a fault occurs, you will hear a steudy "click click dick" emanating from the power supply. This is your warning that somethong is wrong with one of the voltage outputs.

Under no circumstances should you apply more than 140 VAC to the input of the transformer (or more than 280 VAC whem the supply's switeh is in the 220 V position). Permanen damage to the supply will result.

You should connect your Apple's power supply to a properly grounded 3-wire outlet. If is very imporiant that the Apple be connected to a good earth ground.

CAUTION: There are dangerous high voltages inside the power supply's case, Much of the internal circuitry is $n o r$ isolated from the power line, and special equipment is needed for service. DO NOT ATTEMPT TO REPAIR YOUR POWER SUPPLY! Send it to your Apple dealer for service.

ROM MEMORY

The Apple can suppori up io six 2 K by 8 mask programmed Read-Only Memory ICs. One of these six ROMs is enabled by a 74LS138 ut location F12 on the Apple's board whenever the microprocessor's address bus holds an address between SDO日l and SFFFF. The eight Dald butputs of all ROMs are connected to the microprocessor's data line buffers, and the ROM's address lines are connected to the buffers driving the microprocessor's address lines Aht itrough Al 0 .

The ROMs have three "chip select" lines to enable them. CSi and CS3, both active Iow, are connected together to the 7415138 at location F12 which sefects the individual ROM5. CS2, which is active high, is common to all ROMs and is connected to the INH (ROM Intibit) Jine on the peripheral connectors, If a card in any peripheral slot pulls this line low, all ROMs on the Apple board will be disabled.

The ROMs are simitar to type 2316 and 2716 programmable ROMs: Howevet, the chip selects on most of these PROMs ate of a different polarity, and they cannot be plugged directly into the Apple board.

A7	10	24	$+5 \mathrm{~V}$
A6	2	23	A8
A5	3	22	A9
A 4	4	21	CS3
A3	5	20	CSI
A2	5	19	Al0
A)	7	18	CS2
A	8	17	D7
D®	9	16	D6
D1	10	15	D5
D2	11	14	D4
Gnd	12	13	D3

Figure 13. 9316B ROM Pinout.

RAM MEMORY

The Apple uses 4 K and 16 K dynamic RAMs for its main RAM storage. This RAM memory is used by both the microprocessor and the video display circaitry. The microprocessor and the video display interleave their use of RAM: the microprocessor reads from or writes to RAM only during $\$ 0$, and the video display refreshes its sereen from RAM memory during $\Phi 1$.

The three 74LS153s at E11, E12, and E13, the 74LS283 at E14, and half of the 74LS257 at C12 make up the address multiplexer for the RAM memory. They take the addresses generated by the microprocessor and the vided generator and multiplex them onto six RAM address lines. The other RAM addressing signals, $\overline{\mathrm{RAS}}$ and $\overline{\mathrm{CAS}}$, and the signal which is address line 6 for 16 K RAMs and $\overline{\mathrm{CS}}$ for 4 K RAMs, are generated by the RAM select circuit. This ctrcuit is made up of two 74LS139s at E2 and F2, half of a 74LS153 at location C1, one and a half 74LS257s at C12 and J1, and the three Memory Configuration blocks at D1, E1, and F1. This circuit routes signals to each row of RAM, depending upon what type of RAM (4 K or 16 K) is in that row,

The dynamic RAMs are refreshed automatically during \$1 by the video generator circuitry. Since the video screen is always displaying at least a 1 K range of memory, it needs to cycle through every location in that 1 K range sixty times a second. It so happens that this action automatically refreshes every bit in all 48 K bytes of RAM. This, in conjunction with the interleaving of the video and microprocessor access cycles, lets the video display, the microprocessor, and the RAM refresh run at full speed, without interfering with each other.

The data inputs to the RAMs are drawn directly off of the system's data bus. The data outputs of the RAMs are latched by two 74LSI74s at board locations B5 and B8, und are multuplexed with the seven bits of data from the Apple's keyboard. These latched RAM outputs are fed directly to the video generator's character, colot, and dot generators, and also back ontio the system data bus by two 74LS257s at board locations B6 and B7,

Figure 14．RAM Pinouts

THE VIDEO GENERATOR

There are 192 sean tines on the video scteen，grouped in 24 lines of eight scan lines each．Each sean line displays some or all of the contents of forty byies of memory．

The vided generation circuitry derives its synchromzation and timing signals from o chain of 74 LSI61 counters at board locafions D11 through D14．These counters generate fifteen syn－ chronization signals：

$$
\begin{gathered}
H 0 \text { HI H2 H3 H4 H5 } \\
V G \text { V1 V2 V3 V4 } \\
V A \text { VB VC }
\end{gathered}
$$

The＂ H ＂family of signals is the horizontal byte position on the screen，from ø日ضn日0 to binary 100111 （decimal 39）．The signals V0 through V4 are the vertical line position on the screen． from binary 060 to binary 10111 fdecimal 23）．The VA．VB，and VC signals are the vertieat stan line position within the vertical screen line．from binary घ日日 to 111 （decimal 7）．

These signals wre sent to the RAM address muttiplexer，which turns thom into the address of a single RAM location，dependent upon the setting of the video display mode soft switches（see below）The RAM muitipfexer then sends this address to the atray of RAM memory during ©1． The latches which hold the RAM datas sent by the RAM urray reroute it to the video generation circuil．The 74L．S283 at location rearranges the memory addresses so that the memory mapping on the screen is scrambled．

If the current area on the screen is to be a text character，then the video generator will route the lower six bits of the data to a type 2513 character generator at location 85 ．The seyen rows in cach character are scanned by the VA，VB，and VC signals，and the output of the character gen－ erator is serialized into a stream of doty by $\$ 74166$ at location A3．This bit streum is routed to an exclusive－OR gate，where it is inverted if the high bit of the data byte is off and either the sixth bit is low or the 555 timer at location B3 is high．This produces inverse and nashing charac－ ters．The text bit stream is then sent to the video selector／multiplexer（below）．

If the Apple＇s video screen is in a graphics mode，then the dita from RAM is sent to two 74 LSI94 shift registers at board locations B4 and B9．Here each nybble is turnod into a serial data stream．These two datd strearns are also sent to the video sefector／muluplexer．

The 74LS257 multiplexer at board position A8 selecis between Color and High-Resolution graphies displays. The serialized Hi-res dot stream is delayed one-bate clock eycle by the 74L.S74 at location A11 if the high bif of the byte is set. This produces the atternate color set in High. Resotution graphics mode.

The video selector/multiplexer mixes the two dafa streams from the above sources according to the setting of the video screen solt switches. The 74LS194 at location A10 and the 74LS151 at A9 select one of the serial bit streamis for text, color graphics, or thigh-resolution graphics dependiag upon the screen mode. The linal serial output is mixed with the composite synchronization signal and the color burst signal generated by the video syne circuits, and sent to the video output ionnectors.

The viden display soft switelies, which controt the video modes, are decoded us part of the Apple's on-board 1/O functions. Logic gates in board locations B12. B13. B11, A12, and A11 are used to control the various viden mades.

The color burst signal is created by logic gates at B12, B13, and C13 and is conditioned by R5, coil LT, C2. and trimmer capicitor C3. This trimmer sapacitor can be luned to vary the timt of colors produced by the video display. Transistor Q6 and its companion resistor R27 disable the color burst signal when the Apple is displiying text.

VIDEO OUTPUT JACKS

The video signat genorated by the aforemontioned circuitry is an NTSC compatible, similar to an ElA standard, positive composite video signal which can be fed to any standard closed-circuit or studio videa monitor. This signat is available in three places on the Apple brand:

RCA Jack. On the back of the Apple board, near the right edge, is a standard RCA phono jack. The sleeve of this jack is connected to the Apple's common ground and the up is cennected to the video output signal through a 200 Otm potentiometer. This potentiometer can adjust the voltage on this connector from 8 to I volt peak.

Ausiliary Video Connector. Ori the right side of the Apple board near the back is a Molex KK100 séries connector with four square pins. $25^{\prime \prime}$ tall, on $10^{\prime \prime}$ centers. This connector supplies the composite sideo output and two power supply voltages. This connector is illustrated in figure 15.

Table 28: Auxiliary Video Output Connector Signal Descriptions		
Pin	Name	Description
1	GROUND	System common ground. 0 volts.
2	VIDEO	NTSC eompatible positive composite video. Black level is about .75 voif, white level about 2.0 voll . syic tip level is 0 volts. Ounput level is not adjustable. This is not protected against short circuils.
3	$+120$	+ 12 voll power supply.
4	-5v	- 5 volt line from power supply.

Auxiltary Video Pin. This single metal ware-wrap pin below the Ausiliary Viden Outpur Connecfor supplics the same vided signul usariable on that sonnector it is meant to be a connection point for Eurapple PAL/SECAM encoder boards.

Figure 15, Auxiliary Video Ourpun Connector and Pin.

BUILT-IN I/O

The Apple's burt-ith $1 / 0$ fuftettons are mapped into 128 memory locations beginning it SCubh On the Apple board, i4 741 S 138 ut locstron F13 called the $1 / O$ selector decodes 1 hese 128 special addresser and enables the various functions.

The 74LS1 38 is snabled by another " 138 at lecation 1112 whenever the Apple's address bus contains in address between SCD日日 and SCDFF. The I/O selector divides this 256 -byte tange irto eight sisteen-byle ranges, ignonimg the range SCbsa through SCOFF, Each oulpul line of the ' 138 becones active now) when is assoctated 16 -byte range is heing referenced.
The " \emptyset " line from the $\mathrm{I} / 0$ selecter gates the duta from the keyboard connector into the RAM data muluplexer
The "1" line from the $1 / O$ seleusor resets the 741.S74 flip-flop al B10, which is the keyboard gag
The " 2 " line toggles ome half of a 74 LS74 at fecation K13. The output of this flip-flap is connected through ia restistor negwork to the lip of the cassetle oulput juck.

The ' 3 "' line togetes the other half of the 741 S 74 at K13. The oumpt of this mup-flop is connected through a capacitor and Darlingion umplifier circuit to the Apple's speaker connector on the right edge of the board under the keyboard.

The "4*" line is connected directly to pin 5 of the Game $1 / 0$ connector. This pin is the uriliwy CA4b STROBE

The "Ě" fine is used to enable the THLS259 at Incation F14. This IC contains the sofl switches for the video display and the Game I/O connector unnunciator outpuls. The swiches are selected
by the address lines I through 3 and the serting of each switch is eontrolled by address line 0
The "6" fine is used to enable a 741.5251 eight-bit muttiplexer at location H14. This multiplexer, when enabled comnects one of its eight imput limes to the high order bit (bit 7) of the three-state system data bus. The bomom three address lines control which of the eight fopuis the multiplexer chooses. Four of the max's mputs some from a 553 quad timer at focation 1113 , The inputs to ithis limer are the game controller pins on the Game $1 / 0$ connector. Thice other iopus to the mulGiplexer come from the simgle-bit (pushbuton) inputs an the Game 1/Q connecfor. The last multiplexer input comes from a 741 operational amplifiet at locauon K13. The input to this op amp eornes from the cassene input jack.

The " $7^{\prime \prime}$ line from the 1/0 sefector resens ill 「our timers in the 553 quad timer at location H13. The four inputs to this timer come from atl RC neiwork made op of four $0.022 \mu \mathrm{~F}$ capactiots, four 100 Othm resistors, and the variable revistors in the game conirollers atiached in the Giame $1 / 0$ connector. The total resistance in each of the Tour timing circuits determines the timing. characteristics of thut extcuit

"USER 1' JUMPER

There is an unlabeled pair of solder pads on the Appie board. to the leff of slot 0, calted the "User 1 " jumper. This jumper is illustrated in Photo 8 . If you contect a wire between these two pads, thent the USER 1 tine on ouch peripherat conttectors becomes uctive If anty peripheral card pulls this line low, all internal $1 / 0$ decnding is disabsed. The T/O SELECT and the DEVICE SELECT lines all go high and will remain high while LUSER I is low, regardless of the address on the address bus.

Photo 8. The USER 1 Jumper +

THE GAME I/O CONNECTOR

$+5 \mathrm{y}$	10	16	NC
PBD	2	15	ANO
PBI	3	14	AN 1
PB2	4	13	AN_{2}
CQ4ण STROBE	5	12	AN3
GCl	6	11	CC3
GC2	7	10	GCl
Gnd	8	9	NC

Figure 16.
Game 1/O Connector Pinouts

Table 29: Game 1/O Connector Sigual Descriptions		
Pin:	Name:	Description:
1	+5\%	+5 voft power supply. Total current drain on this pin must be less than 100 mA .
2-4	PBD-PB2	Single-bit (Pushbulton) inpuls. These are standard 7415 series TTL inpuis.
5	CU40 STROBE	A general-purpose strobe. This line, normatly thgh, voes low during $\Phi \emptyset$ of a read or write cycle to any address from SC04 through SC64F. This is a shandard 74LS TTL oulpul
6,7,10.71	GCO-GE3	Game controller inpors. These should eacti be cornected through a 150 K Ohm variable resistor to +5 v .
8	Gind	System electrical ground.
12-15	ANO-AN3	Aanunciator outputs. These are standard 74LS series TTL oulputs and must be buffered if used io drive other than TTL inputs
9,16	NC	No internal connection.

THE KEYBOARD

The Apple's buill-in keyboard is built around a MM5740 monolithic keyboard detoder ROM The inputs to this ROM, on pins 4 through 12 and 22 strough 31 , are connected to the matrix of keyswitches on the keyboard. The outputs of this ROM are buffered by a 7404 and are connected to the Apple's Keyhoard Connector (see below).

The keyboard decoder rapidly seans tfrough the array of keys on the keyboard. looking for one which is pressed. This scanning action is controlled by the free-funning osciltator made up of three sections of a 7400 at keyboard focation U4. The speed of this oscillation is controlled by C6. R6, and R7 on the keyboard's primed-ciremit boad.

Figure 17. Schematic of the Apple keyboard

The REPT key on the keyboard is connected fo a 555 timer citcoit at board location U3 on the keyboard, This chip and the cupactor and three resistors around it generate the 10 Hz "REPeaT" signal If the 220K Ohim tésistor R3 is replaced with a resistor of a lower value, then the REPT key will repeat chatacters at a faster rate.

See Figure 17 for a schemiatic dragram of the Apple Keyboard.

KEYBOARD CONNECTOR

The data from the Apple's keybourd goes directly to the RAM data multiplexers and lathes. the two 74LS257s at locations. B6 and B7. The STROBE line on the keybourd connector sets a 74 LS 74 flip-flop at location B10. When the $1 / 0$ sefector activates its " 0 " line, the data which is on the seven inputs on the keyboard compector, and the state of the strobe dip-flop. are mulnplexed onto the Apple's data bus.

Table 30: Keyboard Connector Signal Descriptions		
Pin:	Name:	Desctiption:
1	+5y	+5 yolt power supply. Total surrent drain on this pin must be Eess than 120 mA
2	STROBE	Strobe output from keyboard. This line should be given a palse at least 10μ s long each time a key is pressed on the keyboard The strabe can be of elther polarity,
3	RESET	Microprocessor's RESET line. Normally high. this line should be pulled low when the RESET button is pressed.
4,9,16	NC	No eommection.
5-7. 10-13	Datu	Seven bit ASCII keybourd data input.
8	Gind	System electrical ground
15	-12v	-12 volt power supply. Keyboard should draw less than 50 mA .

$+5 y$	1 l	16	NC
STROBE	2	15	-12v
RESET	3	14	NC
NC	4	17	Data 1
Data 5	5	17	Data 0
Datu 4	6	If	Data 3
Datu 6	7	10	Data 2
Gind	8	9	NC

Figure 18 ,
Keyboard Connector Pinouts

CASSETTE INTERFACE JACKS

The iwo female minialare phone jacks on the buck of the Apple II board can connect your Apple to a normal home cassente tape recorder

Cassette Input Jack. This jack is designed to be connected to the "Earphone" or "Monitor" output jacks on most tape secorders. The imput voltage should be I volt peak-to-peak (nominal) The inpur impedance is 12 K Oftms.

Cassette Output Jack: This jack is designed to be connected to the "Microphone" input on most tape recorders. The oupput voltage is 25 mv into a 100 Ohm impedance load.

POWER CONNECTOR

This connector mates with the cable from the Apple Power Supply. This is an AMP \#9-35028-1 six-pin male connector.

		Table 31: Power Connector Pin Descriptions
Pin:	Name:	Description:
1.2	Ground	Common electrical ground for Apple board.
3	$+5 v$	+5.0 volts from power supply. An Apple with 48 K of RAM and no peripherals draws -1.5 amp from this supply.
4	$+12 \mathrm{v}$	+12.0 volts from power supply. An Apple with 48 K of RAM and no peripherals draws -400 ma from this supply.
5	$-12 \mathrm{~V}$	-12.0 volts from power supply. An Apple with 48 K of RAM and no peripherals draws $\sim 12,5 \mathrm{ma}$ from this supply.
6	$-5 \mathrm{v}$	-5.0 volts from power supply. An Apple with 48 K of RAM and no peripherals draws $\sim 0.0 \mathrm{ma}$ from this supply.

Figure 19. Power Connector

SPEAKER

The Apple's internal speaker is driven by half of a 74LS74 ilip-flop through a Darlington amplifier circuit. The speaker connector is a Molex KKI00 series connector, with two square pins, $25^{\prime \prime}$ tall, on $10^{\prime \prime}$ centers.

Table 32: Speaker Counector Sigual Descriptions

Pim:	Name	Description:	
1	SPKR	Speaker signal. This line will deliver about 5 watt into an 8	

$2+5 v+5$ voll power supply.

Figure 20. Speaker Connector

PERIPHERAL CONNECTORS

The eight peripheral connectors along the back edge of the Apple's board are Winchester \#2HW25C0-11150-pin PC card edge connectors with pins on 10° centers. The pinout for these connectors is given in Figure 21, and the signal descriptions are given on the fotlowing pages.

Figure 21. Peripheral Connector Pinout

Table 33: Peripheral Connector Signal Description		
Pin:	Name:	Description:
1	$1 / 0$ SELEC	This line, normally high, will become law when the microprocessor references page SC\% where n is the individual stot number This stgnal becomes attive during $\$ 6$ and will drive 10 LSTIL. loads". This signal is not present on perinberal connector a.
2-17	$A{ }^{\text {a }}$-A15	The buffered address bus. The address on these lines becomes valid during $\Phi 1$ and remains yalid through wh. These lines will eneh drive 5 LSTTL loads*
18	R/W	Buffered Read/Write signal. This becomes vallid at the same lime the address bus does, and goes high daring a read cycle and low during at write. This line can arive un to 2 LSTTL Jouds*
19	SYNC	On poripheral connectur 7 unds. this pin is connected to the video liming generator's SYNC signal.
20	$\overline{1 / O}$ STROBE	This line goes low during \&0 when the address bus contains an ruddeess between $\$ \mathrm{C} 800$ and SCFFF. This line will drive 4 LSTIL logads
21	RDY	The 6502's RDY imput: Pulling this line low duriog 中1 will halt the microprocessof, with the address bus holding the address of the current location being ferched
22	DMA	Pulling this line law disatjes the 6502's address bus and haits the microprocessor, This line is held high by a 3 K 32 resistor to +5 v
23	INT OUT	Daisy-dhuired interrupt output to lawer priority devices. This pin is usuafly cornected to pin 28 (INT IN)
24	DMA OUT	Daisy-chained DMA outpur to lower priotity devices. This pin is usually connected to pin 22 (DMA IN)
25	$+5 v$	+5 volt power supply. 500 mA curten is nygilable for all peripheral cards.
26	GND	System electital ground.

[^21]| Table 33 (cont'd): Peripheral Connector Signal Description | | |
| :---: | :---: | :---: |
| Pin: | Name: | Description: |
| 27 | DMA IN | Daisy-chained DMA input from higher priority devices. Usually connected to pin 24 (DMA OUT). |
| 26 | INT IN | Daisy-chained interrupt input from higher priority devices. Usually connected to pin 23 (INT OUT). |
| 29 | NMI | Non-Maskable Interrupt, When this line is pulled fow the Apple begins an interrupt cycle and jumps to the interrupt handling routine at location $\$ 3 \mathrm{FB}$. |
| 30 | IRQ | Interrupt ReQuest. When this line is pulled low the Apple begins an interrupt cycle only if the 6502's I (lnterrupt disable) flag is not set If so, the 6502 will jump to the interrupt handling subroutine whose address is stored in focations S3FE and 53 FF . |
| 31 | $\overline{\mathrm{RES}}$ | When this line is pulled low the microprocessor begins a RESET cycle (sée page 36). |
| 32 | INH | When this line is pulled low, all ROMs on the Apple board are disabled. This line is held high by a $3 \mathrm{~K} \Omega$ resistor to +5 v . |
| 33 | $-12 \mathrm{~V}$ | -12 volt power supply. Maxmum current is 200 mA for all peripheral boards. |
| 34 | $-5 v$ | -5 volt power supply, Maximum current is 200 mA for all peripheral boards. |
| 35 | COLOR REF | On peripheral connector 7 only, this pin is connected to the 3.5 MHz COLOR REFerence signal of the video generator. |
| 36 | 7M | 7MH2 clock. This line will drive 2 LSTTL loads* |
| 37 | Q3 | 2 MHz asymmetrical clock. This line will drive 2 LSTTL loads*. |
| 38 | 中1 | Mieroprocessor's phase one clock. This line will drive 2 LSTTL loads* |
| 39 | USER 1 | This line, when pulled low, disables all internal I/O address decoding ${ }^{* *}$. |

[^22]| Table 33 (conf'd): Peripheral Connector Signal Description | | |
| :---: | :---: | :---: |
| Pin: | Name: | Description: |
| 40 | $\Phi \square$ | Microprocessor's phase zero clock. This line will drive 2 LSTTL loads*. |
| 41 | $\frac{\overline{\text { DEVICE }}}{\overline{\text { SELECT }}}$ | This line becomes active (low) on each peripheral connector when the address bus is holding an address between SCO and SCO F , where n is the slot number plus $\$ 8$. This line will drive 10 LSTTL Joads*. |
| 42-49 | D 0-D7 | Buffered biditectional data bus. The data on this line becomes valid 300 nS into $\Phi \emptyset$ on a write cycle, and should be stable no less than 100 ns before the end of $\Phi \emptyset$ on a read cycle. Each data line can drive one LSTTL load. |
| 50 | $+12 \mathrm{v}$ | +12 volt power supply. This can supply up to 250 mA total for all peripheral cards. |

[^23]

Figure 22-1. Schematic Diagram of the Apple If

Figure 22-2. Schematic Diagram of the Apple II

Figure 22-3. Schematic Diagram of the Apple II

Figure 22-4. Schematic Diagram of the Apple II

Figure 22-5. Schematic Diagram of the Apple II

Figure 22-6. Schematic Diagram of the Apple II

APPENDIX A THE 6502 INSTRUCTION SET

6502 MICROPROCESSOR INSTRUCTIONS

$A D C$	Ade Mertiriy fo Accummatio wifis Carty
AND	＂AND＂Memery mih Accumiatar
ASL．	Shill Lell One 回l Memory br Aecumulator：
目CC	Eranch on Cacry Cleer
ecs	Eranen mer Carty Ser
㫙O	Brenct on Besult Zeta
BIT	Then Bile in Mamarty with Acecminiator
目M1	Erunch on Feesill Mious
BNE	Eranoh on Resuti noizero
EPL	Brensifion Reeull Pras
ERK	Forcet itmas
BYC	Branct on Overtiow Cieas
	Eramen an Overtion Bmi
Cle	Cear Gary－figg
CLD	Pinal Dacimat Mode
CLI	Suat Intartupt Disacie Eff
CLV	Cleter Overtiow Fing
CMP	Cumpare Mmmary and Acoumulstoi
CPX	Compare Memery smi Inaev X
CPY	Compare Memory ind Index．\％
DEC	Dmanennet Mewsty by One
DEK	Dbstement inder K by Come
DEY	Dearament inder 7 DY One
EOA	＂Exclueve－Or＂Memary with Accumulatar
INC	Increment Memory by One
INX	merement intes X by ans
iny	insorment Indes Y by－Gne
JMP	aump ro New Lhcavor
JSA	Jump to Net Lecriboh Sawng Fikium Aicaress

LDA LOAC Accumbiatol witn sabmory
LDX Gbad fintec X will Merabry
LDY Long inden y with Mempry
LSA Shift Aligni ane Bit Mamary or Accurmuiniar
NOF ND Gveration
ORA OF＇Memory win Accumulator
PHA Pugh AcFumintid on stach
PHP Puth Frocessut Sthtias an Stack
PLA Full Accormulator trom Stack
PLP Pult Hrocossar 5tatestrom stect
ROL Rotete One Bil Lell Memory or Actumbiatar
AOR Aotacie Dre Eit Righ IMmmary iar Accamalator
ATI
ATS

Set intarnial Dusabie Statur
STA．Store Aczamialator in Mersory
STK store indes x in Merroty
5TY Stare inony fin Mmmary
TAX Transter Accimarator to indes π
TAY Transler Acciumsuater io inctex \＆
TSX Transler Stack Puinter In fodes X
TXA Trawsiar inoev X so Accimulator
TXS Transfor inaen X to Stazh Pesive
TYA Transtef inder＋to Acoumwalor

THE FOLLOWING NOTATION APPLIES TO THIS SUMMARY:

A	Acrumbiatar
K \%	Hores Bagimeme
M	Memory
\bar{C}	Earrow
p.	Procassar Status Regrsier
9	Siach Foinler
ν	Ehange
-	Na Champe
\cdots	Add
^	Logreai ANO
\%	Subtracl
v	L.pgicai Fxpluside Or
1	Transfer From Suack
1	Transler To Stack
-	Tronster Te
-	Transier To
4	Logigal OR
$\cdots \mathrm{C}$	Program Counter
PCH	Progrett Countier High
PCL	Program Caunter Low
OPEF	Operana
*	Immad-ate Xudressing Madn

PROGRAMMING MODEL

AGCUMULATOA

INDEX FEGISTEA Y

INDEX REGISTER X

PROGRAM COUNTER

STACK POINTER

INSTRUCTION CODES

Main: Dearriplion	Dperation	Addrowing Made	Ausmbly Lingary Form	$\begin{aligned} & \text { HEX } \\ & \text { QP } \\ & \text { Cpte } \end{aligned}$	$\begin{aligned} & \text { he } \\ & \text { gylis } \end{aligned}$	$\begin{gathered} -p^{2} \text { sinter fes } \\ v 2510 \mathrm{~V} \end{gathered}$
ADC Ade mernory lo artumulatiar wish carty	$A-M-C-A D$	Immedale Zera Page: Zera Pagex Absolute Absolute. X Absolute Y (untuecixi (Imitirecily	$A D C$ ender ADC: OpEI ADC Oper x toc Oper ADC Dpen, X $A D C$ Oper. Y $A D C$ ($D \mathrm{pe} \cdot \mathrm{x}$) ADC IDperi Y	69 64 75 60 60 70 79 61 71	$\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 2 \\ & 2 \end{aligned}$	vav ${ }^{\text {a }}$
ANO AND memary with actimuiator	$A A M-A$	Immeduate Zera Page Zera Faple X Absalate Absalute X Absoidte. Y (Iadiracix) (lafirect) Y	4ND a 0 pei ANL Oper AND Oper X AND Oper AND Oper K AND Gper Y AND IOp\#I, XI AND (Oper), Y	$\begin{aligned} & 29 \\ & 25 \\ & 35 \\ & 20 \\ & 30 \\ & 39 \\ & 39 \\ & 31 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 3 \\ & 3 \\ & 3 \\ & 2 \\ & 2 \\ & \hline \end{aligned}$	$\checkmark \vee$
ASL Shitt left one bif (Menory at Accumulator)	15 e R Rgut 7	Accumulator Zera Pade Zero Page X Ahsolute Atrsolate X	ASL. A ast Oper ASL Oper X ASL Opet ASL Ooet X	$\begin{aligned} & \text { OA } \\ & 06 \\ & \text { T6 } \\ & \text { DE } \\ & \text { IE } \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \\ & 2 \\ & 3 \\ & 3 \\ & \hline \end{aligned}$	$\gamma \sqrt{ } / 2$
BCC Branch ar canty clear	Branct on L=0	Rieative	BCCC Opin	01	2	-
BC8 firanch or carry set	Branch un E. 1	Relative	BCS Oper	80	2	-
BED Branch on result zero	Branch miz 21.	Aelative	BEC U1peI	F0	2	
BIT Tesi tats in memiery with accumulatar	$\begin{aligned} & A \wedge M M_{7} \rightarrow N \\ & M_{1}-V \end{aligned}$	Zera Page Absoiute	$\begin{aligned} & \text { BIT: Oper } \\ & \text { BIT Oper } \end{aligned}$	$\begin{aligned} & 24 \\ & \times 6 \end{aligned}$	$\frac{3}{3}$	$M_{2} \mathbf{N}=M_{4}$
BMI Branction result manus	Brameh on N-1	Aelalive	BMI Dper	30	2	
BNE Eranct pn resuit not zero	Branch on 2-0	Relative	BNE Oper	D6	2	
BPL Eranen on result plias	Branch an $\mathrm{N}-6$	Relalive	3ifl oper	10	2	
B BK Farce Ereak	Forced interupi PC-2tr	Implied	ERK*	∞	1	$\cdots+1+$
BVC Branch on overllaw clear	Bianck on y -0	Helatrue	BVE Oper	50	2	-

$\begin{gathered} \text { Namt } \\ \text { Deacriztion } \end{gathered}$	Qisaration	$\begin{gathered} \text { Adirenimio } \\ \text { Mutite } \end{gathered}$	Ausebiy Landuape Fers	$\begin{aligned} & \text { wex } \\ & \text { bi } \\ & \text { aste } \end{aligned}$		$\begin{aligned} & \text { F suatur hey } \\ & \text { NZEIOV } \end{aligned}$
BVS Hiancit un averfiow set	Bisuch on V:1	Priance	EvS Oper	70	2	
CLC Ciean calry lias	D-L	-implent	Cu	1 E	1	0
CLD Clear itecimal madn	$0 \rightarrow 0$	Imalued	CCD	Dit	\dagger	- 11
CLI	$0 \rightarrow 1$	Implied	Cu	54	,	\sim
$\begin{aligned} & \text { CLV } \\ & \text { Ciear oveition tiad } \end{aligned}$	$0 \rightarrow \mathrm{~V}$	Inaplive	civ	88	1	j \ldots
CMP Cumpare memery ated aceumbiater	A -M	mmediate Zero Papr 7ero Fage X Afisclute Asselute X ADsolute y indinct, x) DRdveril: Y	CMP $=0$ per CMP Oper CMP Oper: X CMP Ope: CMP Ipety CMP Cher 4 CMP (Operily	$\begin{aligned} & 68 \\ & C 5 \\ & 05 \\ & 05 \\ & 60 \\ & 00 \\ & 180 \\ & 61 \\ & 01 \\ & \hline \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & 2 \\ & \frac{1}{3} \\ & 3 \\ & \frac{1}{2} \\ & 2 \\ & \hline \end{aligned}$	v*
CPX Compare momory and andes X	$X-M$	Immediate zero Page Absolure	$\begin{array}{ll}\text { CPX } & \text { ainer } \\ \text { CPX } & \text { Dpet } \\ \text { CPX } & \text { Oper }\end{array}$	$\begin{aligned} & \text { EII } \\ & \text { E4 } \\ & \text { E5 } \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & 3 \end{aligned}$	vav
CPY Cormare memory and meen K	$Y-M$	Inmendiale Zeto Page Absolute	TPY ODer C.PY Dper CPY Doer	$\begin{aligned} & \mathrm{ca} \\ & \mathrm{cA} \\ & \mathrm{cs} \end{aligned}$	$\begin{aligned} & 7 \\ & 2 \\ & 3 \\ & \hline \end{aligned}$	vav
DEE Decrement memary by one	$\mathrm{M}-\mathrm{P} \rightarrow \mathrm{M}$	Zern Payn Zero Page: Absolute Absolatex	DEE Ope DEE ODRIX DEC Ope DEC Opee X	$\begin{aligned} & \text { C6 } \\ & 06 \\ & \text { CE } \\ & \text { DE } \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & 3 \end{aligned}$	$\checkmark \checkmark$
DEX Desiemenf index : by ane	$x-1 \rightarrow x$	Imalied	DEX	CA	1	\checkmark
DEY Decrement inder Y by 0 ne	$x-1 \rightarrow r$	1 inglied	DEY	56	1	\checkmark

Nami Describition	Gpersian	$\begin{aligned} & \text { Ateressing } \\ & \text { Mudr } \end{aligned}$	Asambiy Liscuep: Farm	$\begin{aligned} & \text { HEX } \\ & \text { OP } \\ & \text { Cuil } \end{aligned}$	$\begin{gathered} \text { he } \\ \text { Syin } \end{gathered}$	-F 50atur figg stctor
EOR 'Eaclusiv:-0r' memayy wift accumulator	A. VM \rightarrow A	cimenegialt zerc Fage Zen Page x Alsolule Absolute K Astolute Y instireet. Y (inctiosen) V	EOA 20 per For oper EOA Oper X EOA Oger EOA Oper X EOF Ope: Y 	$\begin{aligned} & 49 \\ & 45 \\ & 55 \\ & 40 \\ & 50 \\ & 50 \\ & 59 \\ & 41 \\ & 51 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 3 \\ & 3 \\ & 3 \\ & 2 \\ & 2 \end{aligned}$	x
INC Increment memary ty ine	$M=1-M$	Zero Fape Zero Page: Abstlute Atsaluie X	INE Opef INC Oper. K INC Ope: INC Oper X	$\begin{aligned} & \text { EI } \\ & \text { FE } \\ & \text { EE } \\ & \text { EE } \\ & \hline \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & 7 \\ & 3 \end{aligned}$	NV-2-3
INX incormend ader X by ane	$x+1-x$	Implind	iN:	E8	1	0
INY increment incex Y by ane	$Y+Y=Y$	implinad	iny	C8	1	+2\%
JMP dump io new ibcalisn	$\begin{aligned} & (P C+1)=F C L \\ & (P C+2) \rightarrow P C H \end{aligned}$	Abseliate indereri	$\begin{aligned} & \text { JMP Opet } \\ & \text { JMP 10pen) } \end{aligned}$	$\begin{aligned} & 40 \\ & 60 \end{aligned}$	$\frac{3}{2}$	-----
JSA dump to new location saving return addres	$\begin{aligned} & \mathrm{PG}-2 \mathrm{C} \\ & (\mathrm{PC}+1) \rightarrow \mathrm{PCL} \\ & (\mathrm{PC}+2 \mathrm{I}) \rightarrow \mathrm{PCH} \end{aligned}$	Absolute	JSA Opel	218	3	\square
LDA Land accumalator with mepeny	$M \rightarrow A$	Inmediate Zero Page Iers Page, X Absciute Afsciutex Absialute Y (Indidect X I indanect - Y	IDA nOper LDA Dper LDA Oper, x COA Oper 10A Oper X LDA Opery [DE (Deer X) LDA (DDET) 4	$\begin{aligned} & A 5 \\ & A 5 \\ & B 5 \\ & \text { AD } \\ & 80 \\ & B 9 \\ & \text { B1 } \\ & 81 \end{aligned}$	$\begin{aligned} & 2 \\ & \frac{2}{2} \\ & \frac{3}{3} \\ & 3 \\ & 3 \\ & \frac{2}{2} \\ & 2 \end{aligned}$	$\sqrt{ } \sqrt{ }$
10X Load moex x with mamory	$M \rightarrow \pi$	Inmatiale Zefur Pagt Zerd Fage, 1 Aspolute Absiniale Y	LDX :Opar LDX Dper LDE. Oper Y LDX Opef 1DX Dpee. Y	$A 2$ Af 85 AE 㫙	$\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & \frac{3}{3} \end{aligned}$	$v *$
LDY Load meex y with membry	$M \rightarrow Y$	iminediale Zero Page Zuro Page X Absalure Absalute X	LITY aOper LDY Oper Lor Dper, X LDY Oper Liv Dper x	A 13 A4 84 $A C$ 时	$\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & 3 \\ & 3 \end{aligned}$	$v{ }^{2}$

Seiciliption	Operaum	$\begin{gathered} \text { Avarention } \\ \text { Mude } \end{gathered}$	Anembly Langurge farm	$\begin{gathered} \text { HEX } \\ \text { SP } \\ \text { Sate } \end{gathered}$	$\underset{\substack{\mathrm{Ma} \\ \text { Byas }}}{ }$	P5 Slatus An: Hzoide
RTI Fitiupt hom mierrupt	FPPCA	implied	B71	40	1	Fram Stacn
RTS Hefuth fiom subroutine	$\mathrm{PCH} \mathrm{PC}-\mathrm{t}-\mathrm{PC}$	Involied	RTS	60	1	--0
SBC Subteact memary fram accumulato with borraw	$A-M-E \cdot A$	immediale Zefo Page Zero Page. X Absolute Ahsolute X Alerninte Y \|lincirect XI findirectl Y		$\begin{aligned} & \text { E9 } \\ & \text { E6 } \\ & \text { FS } \\ & \text { ED } \\ & F 0 \\ & F 9 \\ & E 1 \\ & E 1 \\ & F 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & \frac{2}{2} \\ & \hline \end{aligned}$	vav *
SEC Set canery Tias	1-E	(mpplied	SEL	3	i	- - - -
SED Siel ifecimal mode	$1-1$	inpliee	SED	FB	1	---
SEI Set internupe disable status	$1 \rightarrow 1$	Implied	5 St	78	1	$1+$
STA Storé accumulator in memory	$A \rightarrow M$	zero Page Zeis Pajex Absolate Absolute X Absoluter Induect x) (indinect) Y	$\begin{aligned} & \text { STA Oper } \\ & \text { STA Oper: } \text { S } \\ & \text { STA Oper } \\ & \text { STA Oper, } X \\ & \text { STA Opet Y } \\ & \text { STA (Oper, XI } \\ & \text { STA (Oper). Y } \\ & \hline \end{aligned}$	$\begin{aligned} & 85 \\ & 95 \\ & 90 \\ & 90 \\ & 90 \\ & 81 \\ & 81 \\ & 91 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 2 \\ & 2 \\ & 2 \end{aligned}$	\sim
STX Store inden X it memory	$\mathrm{x} \rightarrow \mathrm{M}$	Zero fage Zeto Page Absoluly	$\begin{array}{ll} \text { STX Oper } \\ \text { STX } & \text { Opee y } \\ \text { STX Oper } \\ \hline \end{array}$	$\begin{aligned} & 96 \\ & 96 \\ & 96 \\ & \hline 8 E \\ & \hline \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & 3 \\ & \hline \end{aligned}$	--.-
STY Siove inder y in memary	$\mathrm{r} \rightarrow \mathrm{M}$	zero Page zero Page, x thsolum	$\begin{aligned} & \text { STY Oper } \\ & \text { STY Oper X } \\ & \text { STY Oper } \end{aligned}$	$\begin{aligned} & 34 \\ & 94 \\ & 34 \\ & \hline \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & 3 \\ & \hline \end{aligned}$	\cdots
TAX Transter accumulator to inder X	A \rightarrow x	1 impleal	tax	AA	1	\cdots
TAY Tracster accumuator to inder :	$A \rightarrow+$	Implied	tay	${ }^{\text {AB }}$	1	
TSX Thansfer stack pointe: to index 3	$5 \rightarrow x$	implied	T5\%	BA	1	v/-

Nove	cercasea	Addeteins	Azsembly Fonin frlt	$\begin{aligned} & \text { mex } \\ & \text { uf } \\ & \text { up } \\ & \text { tot } \end{aligned}$	$\begin{gathered} \mathrm{m}_{\mathrm{a}} \\ \mathrm{~m}_{\mathrm{nc}} \end{gathered}$	$\begin{aligned} & \text { Sina fayy } \\ & 42 C 101 \end{aligned}$
TXA Transler indec : to accumialatoi	P-4	1 moued	TKA	${ }_{6}{ }^{\text {a }}$	1	v*
TXS Thamien mater K 10 Hlack paimier	$8-5$	Implied	1×5	${ }_{\text {PA }}$	1	
TYA Transter incer Y to acturruiger	$x \rightarrow A$	taplied	TVA	98	\uparrow	va-

HEX OPERATION CODES

$\begin{aligned} & 5 E-\text { LSA - Abseriune } 8 \\ & 5 F-\text { MOF } \\ & 50-\text { ATS } \end{aligned}$	
51 - ADC - impliacl.	
	$2-N O P$
Bj - MOP	
$\mathrm{BH}^{-1} \mathrm{NOPP}$	
	5 - ADC - Zelo Pag
62-NOP	
$\mathrm{EA}-\mathrm{PlA}$	
	- ADC - immegiai
fiA - ROF - Actumulanar	
6B - MOP	
SC - JMP - indires	
	$D-A D C=A b s o l u t e$
SE - AOR - Absolute	
	$F-\text { NOP }$
70-bys	
	- ADC - lindirecti,
TE-NOR	
73-NOP	
14 - NOP	
	- ADC - Zwn Fage
75 - AOA - zero Page X	
71 - NGF	
78.	
	- ADC - Ausolute
7 A - NOP	
7B-NOP	
$7 \mathrm{C}-\mathrm{NOP}$	
	- ADC - Absolute
TE - ROA - Absolute \times NOP	
75-NOP	
BO - NOP	
且 - STA - inatiren x :	
H2-NOP	
83 - NOP	
	54 -5TY - Zerc Page
	BS - STA - Zero Page
Ber - STX - Zerio Pag*	
BT - NOP	
B6- OEV	
BS - NOP	
BA - TKA	
明-NOP	
	- STY - Atspiote

$30-57 A$－Anspute 日E－57x－Absolule	
	EF－NDF
	90－日CC
	91－5TA－Mindrect Y
	92－NOF
	F3－NDP
	BA～STY－2erg Pagn X
	95 －5TA－2ern Fage X
	96－STX－Zero एege，Y
	97 －NOP
	95－TYA
	99 －STA－abaclute Y
	9A－TXB
	96－NOP
9 C －NOP	
	90－STA－Absohte X
	96－NOF
	9F－NOF
	AD－LDY－Immedtale
	At－LDA－indirect Xi
	A2－LDX－immedıaie
	A3－NOP
	A4－LDY－Zarn Pagn
	AS－LOA－Zeto Page
	AE－LDX－Zero Faye
	AT－NOP
	$A B$－TAV
	A9－LDA－immendiaie
	$A A-T A E$
	AE－NOP
AC－LOV－Abspiute$A D$－Absowite	
$A E$－LDX－Apenlute	
AF－NOP	
$\mathrm{Bu}-\mathrm{BCS}$	
	B1－LDA－lindirectl Y
	$B 2$－NOP
	B3－NOP

Ba－LOY－Zeru Page k	
	Hex－LOX－Zuro Page，Y
BR－CLV	
	E＇t－LDA－Atsarute Y
	EA－「SX
暞－NOP	
	BC －LEY－Ahsolure
	EDD－LDA－Absolule
EF - NOP	
$\begin{aligned} & \text { CD - CPY - Immediate } \\ & \text { CI - GMP - indimei } \mathrm{XI} \end{aligned}$	
CP－NCOP	
C3－NOP	
C4－CPY－Zero Page	
CS －CMP－Zers Page	
$\begin{aligned} & C E-D E C \text { - 2era Page } \\ & C t \text { - NOP } \end{aligned}$	
CEP－1NJY	
	C9－CMP－immediale
CA－DEX	
CE－NOP	
CE－CFY－Ahpalite	
CD－CMF－Absolute	
CE－DEC－Absohute	
CF－NOP	
DO－ENE	
	D1－GMP－lindirecti，\％
D2－NOF	
D3－NOP	
Da－NOP	
D5－CMP－Zern Page，x	
D6－DEC－Zeri Page，x	
DT －NOP	
O6－CLD	
D9－CMP－ADsoiuse Y	
	OA－NOP

APPENDIX B SPECIAL LOCATIONS

Table 1:			
Location: Hex	Decimal	Description:	
SC006	49152	-16384	Keyboard Data
SC010	49168	-16368	Clear Keyboard Strobe

Screen	Page	Begins at:		Ends at:	
		Hex	Decimal	Hex	Decimal
Text/Lo-Res	Primary	\$406	1024	\$7FF	2047
	Secondary	\$800	2048	SBFF	3071
Hi-Res	Primary	\$2000	8192	S3FFF	16383
	Secondary	\$4900	16384	S5FFF	24575

Table 5: Screen Soft Switches			
Location Hex	Decimal		Deseription:
SC050	49232	-16304	Display a GRAPHICS mode.
SC051	49233	-16303	Display TEXT mode.
\$C052	49234	-16302	Display all TEXT or GRAPHICS.
\$C053	49235	-16301	Mix TEXT and a GRAPHICS mode.
SC054	49236	-16300	Display the Primary page (Page 1).
SC655	49237	-16299	Display the Secondary page (Page 2).
Scas6	49238	-16298	Display LO-RES GRAPHICS mode.
SC057	49239	-16297	Display HI-RES GRAPHICS mode.

Table 9: Annunciator Special Locations				
Ann.	State	Address: Decirnal	Hex	
月	off	49246	-16296	\$CD58
	on	49241	-16295	SCD59
1	of	49242	-16294	SCD5A
	on	49243	-16293	SCDSB
2	off	49244	-16292	SCD5C
	on	49245	-16291	SCDSD
3	off	49246	-16290	SCDSE
	on	49247	-16289	SCDSF

Function	Address: Decimal		Hex	Read/Write
Speaker	49206	-16336	\$C030	R
Cassette Out	49184	-16352	SC020	R
Casselle In	49256	-16288	\$C060	R
Annunciators	$\begin{aligned} & 49240 \\ & \text { through } \\ & 49247 \end{aligned}$	$\begin{aligned} & -16296 \\ & \text { through } \\ & -16289 \end{aligned}$	$\begin{aligned} & \text { SC058 } \\ & \text { through } \\ & \text { SC05F } \end{aligned}$	R/W
Flag inputs	49249	. 16287	SC061	R
Fag inpus	49250	-16286	SC062	R
	49251	-16285	SCW63	R
Analog Inputs	49252	-16284	SC064	R
	49253	-16283	5C065	
	49254	-16282	5 C 066	
	49255	-16281	$5 \mathrm{CO67}$	
Analog Clear	49264	-16272	SC070	R/W
Utility Strobe	49216	-16320	\$C04 ${ }^{\text {a }}$	R

Table 11: Text Window Special Locations					
Function	Location: Decimal	Hex	Minimuni/Normal/Maximum Value Decimal	Hex	
Left Edge	32	$\$ 2 \emptyset$	$\boxed{6} / \boxed{39}$	$\$ \emptyset / \$ \emptyset / \$ 17$	
Width	33	$\$ 21$	$\emptyset / 4 \emptyset / 4 \emptyset$	$\$ \emptyset / \$ 28 / \$ 28$	
Top Edge	34	$\$ 22$	$\emptyset / \emptyset / 24$	$\$ \emptyset / \$ \emptyset / \$ 18$	
Bottom Edge	35	$\$ 23$	$\emptyset / 24 / 24$	$\$ \emptyset / \$ 18 / \$ 18$	

Table 12: Normal/Inverse Control Values

| Value;
 Decimal | Hex | |
| :---: | :--- | :--- | Effect:

Table 13: Autostart ROM Special Locations		
Location: Decimal	Hex	Contents:
$\begin{aligned} & 1010 \\ & 1011 \end{aligned}$	$\begin{aligned} & \$ 3 \mathrm{~F} 2 \\ & \$ 3 \mathrm{~F} 3 \end{aligned}$	Soft Entry Vector. These two locations contain the address of the reentry point for whatever language is in use. Normally contains SE063.
1012	\$3F4	Power-Up Byte. Normally contains \$45.
$\begin{aligned} & \hline 64367 \\ & (-1169) \end{aligned}$	\$FB6F	This is the beginning of a machine language subroutine which sets up the power-up location.

Table 14: Page Three Monitor Locations			
Address: Decimal	Hex	Use: Monitor ROM	Autostart ROM
$\begin{aligned} & 1008 \\ & 1009 \end{aligned}$	$\begin{aligned} & \$ 3 \mathrm{~F} \emptyset \\ & \$ 3 \mathrm{Fi} \end{aligned}$	None.	Holds the address of the subroutine which handies machine language "BRK" requesis (normaly \$FA59).
$\begin{aligned} & 1010 \\ & 1011 \end{aligned}$	$\begin{aligned} & 53 \mathrm{~F} 2 \\ & 53 \mathrm{~F} 3 \end{aligned}$	None.	Soft Entry Vector.
1012	53F4	None.	Power-up byte.
$\begin{aligned} & 1013 \\ & 1014 \\ & 1015 \end{aligned}$	$\begin{aligned} & \$ 3 \mathrm{F5} \\ & \$ 3 \mathrm{~F} 6 \\ & \$ 3 \mathrm{~F} 7 \end{aligned}$	Holds a "JuM subroutine whic " \&" comman SFF.	instruction to the handles Applesoft II Normaly $\$ 4 \mathrm{C} \quad \$ 58$
$\begin{aligned} & 1016 \\ & 1017 \\ & 1018 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { S3F8 } \\ & \text { S3F9 } \\ & \text { \$3FA } \end{aligned}$	Holds a ${ }^{\text {"JuM }}$ subroutine wh (CTRL Y) com	instruction to the h hundles "User" mands.
$\begin{aligned} & 1019 \\ & 1020 \\ & 1021 \end{aligned}$	$\begin{aligned} & \text { S3FB } \\ & \text { S3FC } \\ & \text { S3FD } \end{aligned}$	Holds a "JuM subroutine Maskuble Inter	instruction to the handles Nonpts.
$\begin{aligned} & 1022 \\ & 1023 \end{aligned}$	$\begin{aligned} & \text { S3FE } \\ & \text { S3FF } \end{aligned}$	Holds the add which handles I	ss of the subroutine errupt ReQuests.

Table 22: Built-In 1/O Locations

Key to abbreviations:

gr	Set GRAPHICS mode	tx	Set TEXT mode
nomix	Set all text or graphics	mix	Mix text and graphics
pri	Display primary page	sec	Display sécondary page
lores	Display Low-Res Graphics	hires	Display Hi-Res Graphics
an	Annunciator outputs	pb	Pushbutton Inputs
ge	Game Controller inputs	cin	Cassette Input

$\begin{aligned} \text { mix } & \text { Mix text and graphics } \\ \text { sec } & \text { Display secondary page } \\ \text { hires } & \text { Display Hi-Res Graphics }\end{aligned}$
pb Pushbutton inputs
cin Cassette Input

Table 25：1／O Location Base Addresses

Base	Slot							
Address．	\emptyset	1	2	3	4	5	6	7
\＄Cb80	SC080	SC090	SCDAも	इСロВØ	SCOCD	SCODO	SCOEO	SCOFD
SC081	SC081	\＄C091	SCDAI	SCOBI	SCOCI	SCODI	\＄CUE1	SCOFI
SC082	\＄C082	\＄C092	SCDA2	SC0B2	5 SaC 2	SCOD2	SCOE2	5 CBF 2
5 CO 03	SC083	SC093	SCDA 3	SCOB3	SCaC3	SCDD3	SCOE 3	SCOF3
SC084	\＄C084	5 SO 94	SCDA4	SCOB4	SC0C 4	SCOD4	SCOE4	SCOF4
SC085	\＄C085	SC095	SCOA5	\＄COB5	SCDC5	\＄CDD5	\＄COES	SCOF5
SC086	SC086	SC096	SCDA6	SC0B6	SCDC6	SC0D6	SCUE6	SCDF 6
SC087	SC087	SC097	SCDAT	SC0B7	SCDC7	SC0D7	\＄CDE7	SCOF？
SC088	SC088	SC098	SCDA8	SCOB8	SCDC8	5 SOD 8	SCOE8	SCDF8
SC089	\＄C089	SC099	SCDA9	SC0B9	SCロC9	SCbD9	5COE9	SCOFQ
\＄C08A	\＄C08A	$5 \mathrm{SC99}$ A	\＄COAA	SCOBA	SCOCA	SCODA	SCOEA	SCDFA
\＄C08B	SC08B	SC09B	SCDAB	SC0BB	SCDCB	SCODB	SCOEB	SCOFB
SC08C	\＄C08C	$5 \mathrm{C09C}$	SCOAC	SCOBC	SCOCC	\＄CODC	SCDEC	\＄COFC
\＄C08D	SC08D	SC09D	SCOAD	SCOBD	SCDCD	SCODD	SCDED	SCOFD
\＄C08E	\＄C08E	SCb9E	SCDAE	SCABE	SCDCE	SCODE	SCDEE	SCDFE
\＄C08F	SC08F	SC09F	SCOAF	SCOBF	SCDCF	SCODF	SCOEF	\＄COFF
				I／O	cations			

Base	Slot Number						
Address	1	2	3	4	5	6	7
50478	50479	\$047A	5047 B	5047C	5047D	S647E	3047 F
$504 \mathrm{F8}$	S04F9	\$04FA	\$04FB	564 FC	504 FD	S04FE	S04FF
50578	50579	\$057A	\$057B	5057C	\$657D	S057E	5057F
505F8	50579	\$05FA	S05FB	505 FC	\$05FD	S05FE	505 FF
\$0678	50679	S067A	\$067B	\$067C	5067D	\$067E	5067F
\$06F8	$506 \mathrm{F9}$	\$06FA	S06-B	\$06FC	\$66FD	\$06FE	$506 F F$
\$0778	50779	\$677A	\$977H	\$977C	S677D	S 977 E	\$677F
\$07F8	S07F9	S 07 FA	S07PB	S07FC	\$07FD	S07FE	\$ 37 FF

appendix C ROM LISTINGS

13 A. AUTOSTAKT ROM LISTING 155 MONITOR ROM LISTING

AUTOSTART ROM LISTING

0400
0000
0000
0000
0000
0000
0005
0000
0000
0002
0005
0000
0000）
0000
0000
0000
0000
0000：
F800
F800
FEOO
FBOD
FBOQ
Fe00．
FBOO
F600
Fgoo
FBOO
Fabo
FBOD
FBOO
FEOO
FEOD
FEOO
FEOO
FEOO
FBOO
FEOQ
FEOO．
FeOO
FROO
FEOO．
FBOO：
F600．
FEDO
FEOO
Fe00
Feloo
F日QO
FEOD：
F日00
Feoo
FEOO：
F日00：
Fgoo
FGOO
FEOO
FBOD
Feiod
FEOO
FBOO
FGOO
FEOD．
FEGO
FEOO
FEOO
FEOO

	FBOO		$\triangle \square^{\circ} \mathrm{ACC}$	EGU $\$ 45$	NQTE OVERLAR HITH A5H：
	F日OO		70 XREC	EGU 440	
	FROO		71. YREC	EGU 447	
	FH00		TE STATUS	E＠U 94E	
B－in	FEOO		Tia SFNT	EQU 549	
\％	F日00		74 ANDL	EQU $\$ 4 E$	
	F6DO		75 FNDH	EGU $44 F$	
	FEOD		TS PICK．	EGU 3 ¢5	
－	F900		7 F IN	EGU 50200	
	F800		78 ERIM	EQU \＄2FC	NEW VECTOR FOR ERK
－	FEOO		79 SOFTEV		VECTOR FOR WARN START
	FEOC		BO PWREDUP	EQU क3F4	THIS MLET＝EOF W\＄$\$$ AS OF SO－TEU +1
$\square=$	FEOO		E1 AMPERV	EQU $\$ 3 F 5$	APFLESGFT 4 EXJT VECTOP
	FEDO		E2 USFADR	EGU \＄03FE	
	Fgod		E3 NM1	EGU＋03FE	
－	FEOO		E4 IRGLOC	EQU E3FE	
	FEDO		ES LINEI	EQU $\$ 400$	
	FEOO		Es MSLOT	EQU \＄07FE	
	F800		97 IDADA	EGU \＄ 5000	
	F900		日E KED	EGU $=0000$	
	Fgoo		日G KEDSTRA	EQU $=010$	
－	Fseod		90 Tapegut	EKU \＄6020	
	F900		71 5PKF	EQU 2 C030	
	FeOO		C2 TXTCLR	EQU ECOSO	
	FBOD		93 TXTSET	EGU \＄C0S1	
－	FBOD		94 MIXCLF	EGU 50052	
	FBOO		95 MIXSET	EOU ACOS3	
	FBOO		96 LOWSCA	EGU $\mathrm{SCO54}$	
D－n	FBOO		97 HISCR	EQU sCOS	
	FBOO		9E LDRES	EQU \＄0056	
	Feoc－		D¢ HIRES	EGU \＄COS7	
Lens	FHOC，		100 EETANO	EGU COSE	
0	FEOO		101 CLRANO	EOU scoss	
	FEOO：		102 SETAN1	EQU \＄COSA	
	F900：		103 CLFANI	EQU SCO5日	
	FEDO		104 SETAN2	Eau $4 \operatorname{cosc}$	
	F900		105 CLRAN2	EGU SCOSD	
	F800		106 SETAN3	EQU ACOSE	
Exaln	Feoo		107 CLRAN3	EQU 3 COSF	
\pm	F800		108 TAPEIN	EQU CCObO	
	FEOO		109 PADDLO	EGU \＄COA4	
	F800		110 FTA 10	EGU \＄CO70	
	FEOO		111 CLRROM	EQU \＄CFFF	
	F800：		112 BASIC	EGU SE000	
－	F600		113 日ASIC2	EGU WE003	
B－a	F800		：－－	PAEE	
	F900：		115 PLDT		
	F99：	Qe	116	PHP	
	FE02	20.47 FB	117	JSF GEASCALC	
	F605：	EE	11 E	PLP	
	FEOb	49 OF	119	LDA H \＃ 0 OF	
	FBOE	QO OR	120	BCC．RTMASP	
－	FBOA	69 EO	121	ADC \＃FEO	
	FEOL	E15 2E		日TA MASH	
	FAOE	5．1 Eta	123 PLOT1	LDA 1GBASL \％	
	F810	4530	224	EDR COLDR	
	F912	25.20	：25	AND IJASK	
	F914	51 E6	12 c	EOF（GBASL）．${ }^{\text {P }}$	
	F816	91 －20	127	STA（GBAEL）Y	
	FEI日	¢0 000	12 B	RTS	
	FE19	2000 FE	$129 \text { HLINE }$	JSF PLDT	
	FE1G	c4 EC	130 HLINVEI	CPY HE	
0	FG1E	BO 14	431	BCE RTEI	
	F日20	Q日	132	It才y	
	F62，	20 OE FA	133	JSR PLCDT 1	
\cdots	FE24	80 Fb	134	BCC HLINEI	
\％	FE26	E9 01	13E VLINEZ	ADC \＃${ }^{\text {P }}$ O1	
	FERE	4 E	13E VLINE	PHA	
	Fgic9	20 OO FE	137	JSR PLDT	
Ens	FARC	¢ Br_{6}	33 E	Ple	
	Fazt	C5 20	139	CHF VE	
	Fg2F	90 FS	140 I	DCC VLINE？	
	F93：	60	141 RTSI	RTS	

F日az		$2 F$	142	CLRSCR	LDV	\＃32F
Feaj4	DC	Q2	143		BNE	CLRSCz
Fersic	46	27	144	ClRtop	LDY	\＃＋こ7
FE3E	84	EL	145	CLRSC2	STY	$V E$
FESA	AO	2－	146		LDY	\＃\＄27
Fasc	A 5	03	147	CLRSC3	LDA	\＃400
FESE	日5	30	14 B		STA	CDLOF
FEくら	20	2P FE	14^{60}		JSA	ULINE
FB43	日E		150		DEY	
FE44	10	F：	151		EPL	CLFSC3
$\begin{aligned} & \mathrm{FEAb} \\ & \mathrm{FEAT} \end{aligned}$	60		$\begin{aligned} & 152 \\ & 155 \end{aligned}$		RTS PAOE	
F84？	48		154	GEAASCALC	PHA	
FE4E	4A		155		LSR	A
Fga？	29	03	150		AND	1403
FEAE	09	0 C	157		QRAA	\＃ 004
FG4D：	85	27	15 日		STA	GEASH
Fer ${ }^{\text {F }}$	68		154		PLA	
F日S0．	29	18	$1+5$		AND	3418
$\mathrm{FeS5}$ ？	50	05	181		BCC	GECALC
Fes 4	co°	7 F	162		ADC	H 57 F
F95E	日5	2t	163	GECALG	ETA	GEASL
FESE	OT		164		ASL	A
F950	IA		155		A5L	A
F日SA	Q5	Et	1 bec		DFA	GEASL
FeSt	95	20	1×7		STA	GEASL．
F日SE	b0		1\＆E		RTS	
FersF	A5	30	169		LDA	COLOR
FBel	1E		179		CLE	
Fegé	67	03	17		ADC	\＃503
FEOA	79	OF	172	SETCDL	AND	640
FE6t	Q5	30	273		STA	CDLOF
FEb日	6．		174		ASL	A
FBb ${ }^{\text {a }}$	JA		125		ASL	A
FBtar	DA		276		ASiL	A
FEbil	－${ }^{\text {a }}$		$17=$		ABL	A
FEbC	QS	30	376		ORA	COLDR
FB6E	E5	30	179		STA	CQLOR
FE70	60		1日0		RTS	
FE71	44		161	SCRN	LSA	A
FE72	OE		162		FHP	
F973	20	47 FE	1 183		JSA	GEASGALC
F976	日1	E6	194		LIDA	IGEASL I Y Y
FE7日	こe		1日		PLP	
F679	－ 80	04	1阳	SCRNE	ECC	RTMSnz
FB7e	4a		19＊		LSR	A
Fe76	4A		198		LSR．	A
FE7D	$4 A$		197		LSP	A
F日7e	4 A		180		LSA	A
F日7F	29	时	151	ATMEKZ	AND	H50F
FEE 1	60		192		RTS	
Fgez			193		PAGE	
F6日2：	A 2	$3 A$	192	INSDS 1	LDX	$\mathrm{F}^{\mathrm{F} \mathrm{CL}}$
F日日4	A4	3E	195		LDY	FCH
FABC	20	96 FD	198		JBA	FRYX2
FBE9	20	4 FPQ	147		JER	PRELNH
FGEC	A1	3A	1960	INEDSE	LDA	［PCL，X \}
FEge	$A E$		170		TAY	
FE日F	4 A		200		LSA	A
FECO	$71]$	05	201		ECS	IEVEN
FE92	GA		202		ROR	A
FER3	B0	10	202		BCE	ERF
Fe95	CO	$A E$	202		CHF	\＃SAE
Fe97	FO	0 c	205		EEQ	ERR
F899	20	87	206		AND	H567
F89	4．A		207	IEUEN	LEA	A
FBPC．	AA		206		TAX	
FEMD	日 0	Bt Fs	209		LDA	FMT 1，\％
FEAC．	20	79 FE	210		JSH	ECRNE
FEA3	DO	04	211		BNE	QETFMT
F＇EAS	AO	B0	212	ERA	LDY	
FEAT	A9	00	2：3		LDA	\％$\$ 00$
FEA？	AA		214	GETFNT	TAX	

FGAA	BD		FG	215		LDA．	FMT2 x
FEAD	E5	SE		216		STA．	FORMAT
FEAF	3°	03		217		AND	\＃＊03
FEDI	65	$2 F$		21日		ETA	LENGTH
Fend 3	98			21中		TYA	
FEB4	29	EF		2at		AND	\＃\＄日F
FBEE	AA			221		TAX	
F日B7	PE			22 L		TYA	
FEEE	A ${ }^{\circ}$	03		R23		LDY	\＃303
FBEA	EO	EA		22.4		CPX	\＃5日A
FGEC	EO	OB		225		BEG	MNND83
F日樶	4.			－354	Mandx 1	LER	A
Felaf	P0	DE		293		BCC	MNNDXa
FECl	4A4			39日		LSE	A
FECL	4 A			225	MNNDXZ	LSR	A
FEC3	09	20		230		DRA	4420
FEC5	EE			231		DEY	
FBCt	DO	EA		235		BNE	HNINDX2
Face	CE			233		1NV	
ERC7	日E			234	MANDX3	DEY	
FACA	DO	F2		A35		BNE	MNNVDX 1
FECC	60			荹 5		FTE	
FECD	FF	FF	FF	237		DFE	6FF，BFF，sFF
FeDO				235		FAGE	
FEDC	20	92	FE	239	IN5TDSP	JEF	1NSDS 1
FED3：	$\mathrm{as}^{\text {e }}$			－40		PHA	
FOD4	E1	3A		E41	PRNTDF	LDA	（PCL），Y
Fgutio	20	DA	FD	242		J5R	PREMTE
F909	A 2	01		243		LDK	\＃801
FEDE	20	3A	F5	244	PRNTBL	SER	PRELE
FBDE	C4	2F		245		CPY	LENGTH
FEEO	ca			246		TNY	
FEEI	40	F1		247		gCC	PRNTIP
FEES	$A 2$	02		249		LDX	\＃803
F日ES	CO	0.4		ह2t		CRY	\＃\＃04
FBET	40	FE		250		BGC	PRNTTEL
FBE7	dE			251		PLA	
FEEA	AE			252		TAY	
FEEE	189	C0	F^{5}	253		LDA	MNEML．Y
FGEE	E5	EC		294		STA	LMNEM
FBFO	b 9	00	FA	255		LDA	MMEMR，
FEFz：	B5	20		255		STA	RTINEH
FEFS：	A 9	00		254	NSTEDL	LDA	\＄500
FGF？	A 0	CS		25E		LDY	\＃\＄05
FEFP	por	2 D		255	PRMINE	ASL	RMIEEM
FGFE	2 t	$2 C$		2ac		ROL	LMNEM
FEFD	2 A			201		REL	A
FEFE	日E			262		DEV	
FEFF	D0	FE：		263		ENE	PRMNE
F901．	65	BF		204		$A D C$	\％s：${ }^{\text {a }}$
F903	30	ED	FL	265		JSR	CDUT
F906	CA			2bb		DE\％	
F907．	DO	EL		$2 ¢ 7$		ENE	NKTODL
F909：	20	4E	F9	26日		JSR	PFBLNK
F900：	AA	2F		26°		LDY	LENGTH
FQOE，	A 2	Q6		270		LDX	4 406
F910	EO	03		271	FPADR 1	CPX	\＃503
F912	FO	15		272		樶O	PRADRS
F914．	D6	2E		273	FFADF2	ASL	FDRMAT
FO16	90	OE		274		BCC	PRADR3
F91日	ED	日3	F9	275		LDA	CHAR $1-1.1$
F91日	20	ED	$F D$	276		USR	CDUT
FQ1E：	BL	89	FS	277		LDA	CHAR2－1 \％X
F921	FQ	D3		276		BEC	PRADFI 3
F923	20	ED	FD	279		USA	CQUT
F926	CA			2日0	PRADR3	DEX	
F927．	DO	E？		291		BINE	PRADF 1
F929	60			292		RTS	
F9EA	EEI			293	PRADR 4	DEY	
F92B：	30	E7		2 E 4		DM1	PRADRE
F720：	20	DA	FD	2日5		JSR	PREYTE
F930	45	EE		286	Pradrs	LDA	FDRMAT
F932	69			$2 日 7$		CHP	\＃कE日

F934	B1	3A	2 Ea		LDA	（PCL），Y
F936：	90	F2	284		BCC	Pradra
F93E			290		PAgE	
F73E	20	50．F4	291	RELADF	JEF	PCADJJ
F93E	A ${ }^{\text {a }}$		192		TAX	
F9330	E日		293		INX	
F930	DO	01	294		DNE	PRNTYX
F93F	CE		295		19\％	
F940	95		246	PRNTMX	TYA	
F941．	20	BA FD	297	PRNTAX	JSk	PREYTE
F944：	BA		298	PRLUTX	TKA	
F945．	4 C	DA FD	298		JMP	PREYTE
F94B	$A E$	03	300	PRRGLTAK	LDK	\＃503
F94A	A9	40	301	PRFL ${ }^{\text {P }}$	LDA	\＃5 ${ }^{\text {¢ }}$
F94C	20	ED FD	302	PREL3	JER	cout
F94F	SA		303		DEX	
F950	DO	FE	304		BNE	PRELE
F952	ds		305		ATS	
F453．	3 B		a0s	PCADJ	SEC	
F954	A5	$2 F$	307	PGADJa	LDA	LEMGTH
F956	A4	35	308	pgadja	LDY	PCH
F95E	A4		909		tax	
F954	10	01	319		BPL	PCADJa
F95E	E！		311		DEY	
F9bC	65	3 a	312	PCADS 4	ADC	PCL
F95E	90	D1	313		ECC	CTER
FQbl	C6		314		INY．	
F961	80		315	RTSE	RTE	
F962	04		316	FMTI	DFE	504
F963．	20		317		DFE	\＄20
F964．	54		318		DFE	\＄54
F905	30		319		DFE	¢ 30
F9be	OD		3e0		DFE	\＄00
F967	θC		329		DFE	\＄80
F960	04		3 E		DFE	\＄04
F464	90		323		DFE	490
FGbA	03		324		DFE	103
F960	2 E		325		DFE	a2e
F96C	54		3 BE		DFE	± 54
FGos	33		327		DFE	\＄33
F96E	05		328		DFE	\＄00
FYGF．	E0		329		DFE	－50
F970	04		330		DFE	\＄04
F97！	40		331		DFE	\＄40
F972	04		332		DFB	\＄04
F973	20		333		DFB	220
F974：	54		33.4		DFA	354
F975	33		335		DF：	433
F976	OD		33 c		DFB	\＄00
F977	BO		3.37		DFE	880
F97e	04		339		DFE	404
F979	90		379		DFE	\＄00
F97A	04		340		DFE	\＄04
F97日	20		341		DFE	2eO
F976	54		342		DFE	± 5.4
F970	35		345		DFE	＊ \％$^{\text {a }}$
FCTE	OD		344		DFE	SOD
F97F	日\％		345		DFB	\＄ BC
F980	［4		346		DFD	304
F901	90		347		DFE	390
F9日	00		348		DFD	\＄00
F9E3	22		348		DFE	\＄22
F9H4	4.		350		DFB	\＄．4．4
FQES	33		351		DFE	\＄33
F9bl	00		35%		DFB	\％OD
Fqa7	Ce		353		DFE	\＄ct
F98日	4.1		754		DFE	84.4
F987	00		355		DFE	100
F9BA	11		340		DFE	41：
F96E	$2=$		357		DFE	\＄22
F98C	4.		355		DFE	． 4.4
F9ED	33		359		DFE	433
FGEE	OD		3150		DFE	$\$ 01$

F9EF	C9	361		DFE	まCE
F990：	4.4	362		DFE	\＄4．4
F971	A？	363		DFE	14．7
F492	01	364		DFE	301
F9\％3	22	165		DFE	q22
F974	44	365		DFE	\＄44
F995	33	36？		DFEI	± 33
F990	QD	7 3 E		DFE	\＄0D
F9CJ	80	386		DFE	480
F998	84	370		pFig	W．04
F999．	90	a 1		DFB	8.90
F99A	01	37e		DFB	501
E990	22	373		DFE	\＄22
F99C	4.	376		DFE	\＄4．4
F990	33	275		DFE	\＄33
FOFE	OD	374		DFE	500
F9\％F	Ea	377		DFE	\＄日0
F9AD	04	378		DFES	804
Fral	90	379		DFE	490
F9AE	2a	380		DFE	£26
F9az	3 l	3日		DFE	531
F9A4	87	382		DFE	\＄87
FYAS	94，	392		DFF	\＄98
F746	00	394	FNTE	DFE	\＄00
F9A7	21	395		DFR	\＄21
F9AE	E1	Tee		DF $\mathrm{H}^{\text {d }}$	\＄日1
FGAP	EE	387		DFE	382
F9an	00	389		DFE	300
F9AE	06	38^{9}		DFE	309
F9AC	59	390		DFB	859
FGAD：	4 D	391		DFE	S4D
FGAE	91	352		DFE	391
FGAF	92	393		DFE	\＄92
F9EO	66	394		DFE：	＊日
F981	4 A	395		DFE	8．4．A
F962	65	396		DFE	se5
F98］	9D	397		DFE	990
F9E4	$A C$	396	CHAF 1	DFE	\＄AC
F9ES	A9	399		DFE	©AF
F90．	$A C$	400		DFE	\＄AC
F9日 7	A3	40：		DFE	¢ A3
Fqug	$A B$	402		DFE	＊AB
F9pa	AL	403		DFE	\＄AA
F98A	D0	404	CHAR2	DFE	¢09
F9日E	00	405		DFE	\＄00
F9，	D日	405		DFEI	＊DE
E96D	m_{4}	407		DFH	WA． 4
F9EE	A 4	40 E		DFE	\＄AA
F9EF	00	408		DFE	\＄00
Fred	15	410	MNEML	DFI	\＄15
EपC！	54	411		DFE	＊EA
FOCE	If	$4: 2$		DFI	115
FACS	23	Q12		DFH	¢23
F9C4	55	414		DFE	45D
FQC5	SE	415		DFE	事日
F966	IE	416		DFE	\＄10
F9C7	A1	417		DFH	4.1
FgCe	915	4.18		DFE	49
FGCA	日 4	419		DFE	組
FGCA	15	420		DFE	\＄1D
FGCB	23	4， l_{1}		DFE	－ 23
FSCC	90	425		DFE	370
FGCD	日B	425		DFEE	\＄日日
FGCE	1D	424		DFE	\＄1D
FGCF	Al	425		DFB	\＄A1
F9D0	00	4 RE		DFE	\＄00
F901	29	427		DFE	427
FqD	17	428		DFE	415
F403	$A E$	425		DEE	\＄$A E$
F9， 4	b^{4}	436		DFH	\＄69
F9D5	AE	431		DFE	3 AE
F9D6	19	432		DFE	\＄ 19
FqD7	2コ	433		DFE	\＄23

FAGD	BC	F2	03	590		STY	SOFTEV FUR NEXT REGET
FAAO	AC	00	EQ	291		IMP	GAETC \mathcal{A} AND DD THE COLD ETART
FAA3	OC	F2	03	5日2	NOFI ${ }^{\text {P }}$	UHIP	〈SDFTEU），SCFT ENTRY YECTIDR
FAAB				$5 日 3$			
FAAE	20	60	FH	584	PWFITIF	JSR	APPLEII
FAAP				585	SETPGS	EGU	＊SET PARE 3 VECTORS
FAAC：	A_{2}	05		5日完		LDX	45
FAAB	BD	FC	FA	587	SETPLP	LDA	PWFCDN－1，x ，WITH CNTRL 日 ADFS
FAAE	90	EF	03	58 B		STA	BRK $V-1 ; x$ ，OF CUFRENT BASIC
FABI	CA			59%		DEX	
FABE	DO	F7		590		BNE	SETPLP
FAB4	A9	C日		591		L．DA	\＃5C日 ，LDAD HI SLDT＋ 1
FAB6	B6	00		592		STX	LDCO SETPG3 MUST RETURN $x=0$
FABE	日5	01		593		STA	LOC1 SET PTR H
FABA	AO	Q7		594	SLODF	LDY	W7 Y IS BYTE PTR
FABC	CE	01		595		DEC	LDCI
FAEE	A5	01		596		LDA	LDCI
FACQ	C9	co		997		CMP	\＃\＃C0 AT LAET SLDT VET
FACE	$F 0$	D7		SqE		9EQ	F1XSEV VES AMD IT CANT BE A DIM 4
F4C4	日D	FE	07	549		STA	MELOT
FAご	B1	CO		000	NXTEYT	LDA	（LOCO）．V FETCH A SLOT EVTE
FACP	D9	02	FE	＋D：		CME	
FACC	DO	EC：		－06		BNE	SLOUP ND SQ NEXT SLOT DOWN
FACE	85			603		DEY	
FAC ${ }^{\text {F }}$	日a			6014		DEY	，VEE SQ CHECK NEXT BYTE
FADC	10	Fs		60ミ		BPL	NXTEYT，UNTIL 4 CHECRED
EADE	OC	00	00	605		JMP	（LDCO）
FAD5	EA			607		NOF	
FADE	EA			¢0E		H0P	
FADT				809	4 REGDS	MUS	T ORG FFADT
FADT	20	日	FD	± 10	REGDSP	」SF	CROUT
FADA	4.9	45		611	RGDSPI	LDA	\＃545
FALC	Ps	40		612		STA	A3L
FADE	A9．	00		613		LDA	\＃500
FAEU	85	41		614		ETA	A ${ }^{\text {a }}$ H
FAER－	AE	FB		－13		LDX	\＃5FB
FAE4	A 9	AC		$b 1 E$	FDsp 1	LDA	\＃5 AC
FAEt	20	ED	FD	b17		JSA	COUT
FAE？	日	1 E	FA	1818		LDA R	RTEL－251，R
FAES	20	ED	FD	415		JER	CDUT
FAEF	A9	BL		b20		LDA	\＃5日D
FAF 1	20	ED	FD	－21		JER	COUT
FAF4				522	－LDA AC	C＋5．．	X
FAF4	ts	4A		623		DFE	585，54A
FAFB．	20	DA	$F D$	624		USR F	PREYTE
FAF9	E日			625		1 NX	
FAFA：	30	EE		beta		Brat	RDEP：
FAFC	30			あご		RTS	
FAFD	59	FA		beg	PWFCON	DW	OLDERK
FAFF	00	EC	45	bet		DFB	500，3EQ， 345
FBOE	20	FF	00				
FBQS	FF			b39	DISKID	DFB	\＄20，5FF， 500 ，EFF
F806	05	FF	36	6.31		DFE	＊03，5FF， $53 C$
FEOR	C1	DO	DO	632	TITLE	DFE	＊C1，${ }^{\text {a }}$ DQ，sDO
FBOC	CC	CY	AO	633		DFB	ECC，\％CS，\＄AO
FBoF	DD	DE		6334		DFB	\＄DD， 4 D日
FDII				635	KLTEL	EQU	＊
FEI 1	C4	Cl	c_{1}	536		DFB 3	\＄C4，\＄CE，501
FE14	FF	C3		537		DFE	\＄FF，\＆CZ
FBio	FF	FF	6F	438		DFB	\＆FF，\＆FF，\＆FF
				Q 39	＊MUST	DRG	कFB19
F⿴17	61	DB	D5	640	ATEL	DFB	SC1，SDE，3D？
FEIC	DO	D3		b4i		DFE	5DO．303
FH1E	AD	70	CO	642	PREAD	LDA P	PTRIG
FH21				842		LET 0	ant
FBE1	A0	00		644		LDY	4 ± 00
FR23	EA			649		NOP	
FE24	EA			6.46		NOP	
FE25	QD	8^{4}	CO	647	FREADE	LDA PA	PADDLQ X
FE2日	10	04		64 E		BPL F	RTSED
F日2a	CE			649		INY	
F926		FE		650		ENE P	PREAD2
FH20．	8日			651		DEY	

FGEE	60		652	ATS20	RTS	
FB2F	AC	00	E	INIT	LDA	\＃$=00$
F831	E5	46	3		STA	STATUS
FR33	AD	56 CO	4		LDA	LOAES
FE36	AD	5260	5		LDA	LOUSCF
F839	AD	5160	E	SETTXT	LDA	TXTSET
FB\＃c	A9	00	\％		LDA	\＃\＄00
FEJE	FO	00	E		㫙	SETWND
FB40	$A[1$	$30<0$	4	SETGR	LDA	TXTELA
F843	AD	\＄3 ca	10		LDA	TEIXEET
FB46	20	36． 70	12		J5R	CLRTJP
FB49：	A7	14	12		L．DA	\＄514
F64E．	ES	22	13	SET WNID	ST＊	UNDTTDP
FE4 ${ }^{\text {D }}$	A 9	00	14		LDA	\＃\＄00
FBaF	Es	20	I5		STA	WNDLFT
FbS：	A9	28	16		LDA	\＃328
Fas3	ES	21	J		STA	WINDWDTH
FES	A 9	16	16		LDA	\＃51日
F日S7	日5	23	19		STA	WNDETM
FE59	A°	17	20		LDA	Wह！ 7
F日5日	日E	25	21	TABU	STA	C．V
FESD．	4 C	22FC	22		JMP	UTAB
FBbo	20	Se FG	23	APPLEI1	JSR	HOME｜CLEAF THE SCRN
FE63	AD	OE	24		LDY	月日
F日 L_{5}	B9	DE FE	25	ETTTLE	LDA	TITLE－1，V ；GET A CHAR
FB6日	90	OE 04	26		ETA	LINE1＋14，${ }^{\prime}$
FB6\％	E5		27		DE：	
FDbC	DO	E？	2 E		BNE	STITLE
FBGE，	50		27		RTS	
FEbF	AD	F3 03	30	SETPWRC	LDA	EOF＇TEV＋ 1
F日TE	49	A5	3.		EOR	\＃ S $^{\text {AS }}$
FE74	ED	F4 03	36		STA	PWREDUP
FE77	00		33		HTG	
F日7日			34	VIDWAIT	EQU	－：CHECK FOR A PAUSE
FH79	ES	aD	35		CHP	\＃S日D ${ }^{\text {a }}$（ DNLY WHEH I HAVE A CR
FB7A	DO	18	3）		GTE	NOWAIT ，NOT SD，DU REQULAR：
FH7C	AC	06 CO	37		LDY	K日D \％IS MEY PRESEED？
FB7F	10	13	3 a		BPL	NOWAIT，NCI
F日日	co	45	37		CPY	\＃हप3 ，TS IT CTL S ？
F日日3．	DO	OF	40		BNE	NOWATT＋NO ED IGNDRE
F8e5	$2 C$	10 co	41		BIT	HPDSTRE CLEAR STAOEE
FBE日	$A C$	00 CO	42	KEDWAIT	LDY	KED－WAIT TILL NEXT MEV TO RESUME
FREB	10	FB	43		BPL	KBDWAIT WAIT FOR KEYPRESS
FBED；	60	E3	44		CPY	Hse3 ，IS IT GONTR ${ }^{\text {H }}$
FB日	FO	02	95		BEG	NDWAIT ，YES SD LEAVE IT
Fbrl	2 C	10 CO	46		BIT	KADSTRE，CLR STRDEE
FB94．	4 C	FD FB	47	NOWAIT	JTAP	VIDUUT I DO AS BEFORE
FE¢7			4 E		FAGE	
FB\％す	36		45	ESCDLD	SEC	1 INGURE CARRY SET
FP9	45	$2 C$ FC	50		JMF	ESC1
FB9P	4 B		31	ESCNOW	TAY	1）USE CHAR AS INDEX
F29C	12	48 FA	52		LDA	XLTBL－6C9 Y ，XLATE 1 JMM TO CBAD
FEPF	20	97 FE	53		JSA	ESCOLD ，DQ THIS CUREDR MDT $10 N$
FEA2	20	$\bigcirc \mathrm{CB} F$	54		JgR	RDKEY AND GET NEXT
FBAS	C5	CE	55	ESCNEH	CNP	\＃\＃CE IS THIS AN N ？
FBAT	［10	EE	5 ta		ACS	ESCOLD F M OR QREATER DD IT
FBA9	59	［5	57		CIAP	\＃\＄C9 LESS THAN 1 ？
FBAE	90	EA	5EI		BCC	ESCDLD－YES SR DLD WAY
RGAD	6^{9}	CL	59		CMP	\＃sCC＋ 15 1T A L－
FBAF	FO	Eb	50		BEQ	ESCDLD ，DCI NORMAL
FEBI	DO	EE	b1		BNE	ESCNDW ：GO DO IT
F8日3	EA		62		NDP	
FEE4	EA		65		NDA	
FBE5	EA		64		NOP	
FGE6	EA		55		NDP	
FEET	EA		b6		NBP	
FE日E．	EA		ET		NOF	
FBEC	EA		GE		NOP	
FEBA	EA		$6{ }^{5}$		NDF	

FC3C	69 F	FD	143		ADC	\＃ 6 FD	ESC－E D	F CKECK		
FC3E：	905	5 C	14.4		BCC	CLREDL	E）CLEAP	O END OF	LT	
FC40：	DO	E9	145		GNE	RT54	ELSE NOT	F／RETUAN		
FG42：	44	24	146	CLREOP	LDY	CH	ESC F 16	CLA TO END	OF	AGE
FC44	AS	25	147		LDA	CV				
FC46	4 B		14 E	CLEDPI	PHA					
FC47．	20	24 FC	149		JSR	VTARZ				
FC．4A：	20	9E FC	150		J5R	CLEOLZ				
FC4D	MO	00	151		LDY	13\％00				
FC4F	d6		152		PLA					
FCSO	69	00	153		ADC	\＃$\$ 00$				
ECS2	C5	23	154		OMP	WNDEETM				
FC54	90	FO	155		BCC	CLEOP：				
FCSb	10	CA	156		BCS	VTAB				
FC5A	A5	22	157	HDIFE	LDA	WNDTOP				
FCSA	85	25	158		STA	CV				
FCSC	AQ	00	189		LDY	\＃\＄00				
FCSE	B4	2.4	160		STY	CH				
FCOO	FO	E4	161		日EQ	CLEOP 1				
FCbe			162		PAGE					
FC62	$A P$	QO	26.3	CR	LDA	\＄500				
FC64	ES	24	154		STA	CH				
FC66	Eb	25	165	LF	INC	CV				
FC6E	45	25	166		LDA	CV				
FCGA	C5	23	167		CMP	WNDETM				
FCbC	90	15	1 ¢E		BCD	VTABZ				
FCGE	Cd	25	169		DEC	CV				
F670	A5	22	170	SCROLL	LDA	WNDTOP				
EC72	4 A		171		PHA					
EC73．	20	24 FC	172		JSR	VTABZ				
FC7E	AS	2 ZE	173	SCRLI	LDA	BASL				
FC7E	95	2A	174		STA	BASEL				
FC7A	A5	27	175		LDA	日ASH				
FCTE：	ES	2 B	176		STA	日ASEH				
FC7E	A4	21	177		LDY	WNDWDTH				
FCEO	日日		178		DEY					
FCE］	dE		179		PLA					
FCE2	69	01	180		$A D C$	\＃+01				
FCB4	C5	23	18：		CIMP	WNDETM				
FCE6	B0	OD	1 EL		BC5	SCRL3				
FCAE：	4 E		1 E 3		PHA					
FCB9	20	24 FC	184		JSR	VTABZ				
FCEC：	B1	2 E	195	SCRLE	LDA	（BAEL），Y				
FCBE	41	2 A	186		STA	（BASRL）．				
FC90	BB		187		DEY					
FCG1	10	FR	1 日日		HPL	GCRLZ				
FC43	30	E．	189		BMI	SCRLI				
FC95	AO	00	170	SCRL3	LDY	\＃$\$ 00$				
FCA7	20	9E FC	191		JSR	CLEOL 2				
FGGA：	100	日6	192		BCS	VTAB				
FC9C	A4	34	193	CLREOL	LDY	CH				
FC9E	A9	AO	194	CLEOL？	LDA	\＃5AO				
FCAO	91	2 E	195	CLEOL？	STA	「日ASL 11				
FGAE	CE		196		1 NY					
FCA3：	C4．	E1	197		CPY	WNDWDTH				
FCAS	40	F9	198		BCC	CLEOL2				
FCAT	60		199		RTS					
FCAE	36		200	WAIT	9EC					
FCAT	48		201	HAITE	PHA					
FCAA	E9	01	202	WAIT3	SBC					
FCAC	DO	FC	203		BNE	WAIT3				
FCAE	68		204		PLA					
FCAF：	E9	Q1	205		SEC	\＃601				
FCE $1:$	DO	Ft	206		日NE	WAITE				
FCE3：	b0		207		RTS					
FCEA	Eb	42	20 B	NXTA4	INC	A4L				
FCB6	DO	02	209		BNE	NXTA1				
FCBE	Eb	43	210		INC	A 4 H				
FCBA	AS	$3 C$	211	1 NXTAI	LDA	A 1 L				
FCEC	C5	3E	212		CMF	A2L				
FCEE	AS	30	213		LDA	A A1H				
FCCO：		3F	214		SEC	A A H				
FCC2	Eb	3C	215		INC	C A1L				

FCCA	DO	$Q 2$		216		BNE	RTS4E		
FCCb	E6	3D		217		INC	A1H		
FCCE	60			218	RT54日	RTS			
FCCP				215		PAGE			
FCCF	AO	4E		220	HEADF	LDY	\＃5 4 4E		
FCCB	20	DE	FC	221		JSR	ZERDLY		
FCCE	DO	F9		E22		ENE	HEADF		
FCDO	69	FE		－23		$A D C$	\＃\＃FE		
FCDE	BD	FS		E24		BCS	HEADR		
FCD4	AC	21		S25		LDY	\＃\＄21		
FCD6	20	DE	FC	226	WREIT	USR	ZERDL		
FCDI	CE			227		INY			
FCDA	CE			22日		INY			
FCab	EE			229	ZERDLY	DEY			
FCDC	DO	FD		230		BNE	ZERDLY		
FCDE	90	O5		231		BCC	WRTAPE		
FCEO	AO	32		232		LDY	\＃\＃32		
FCEZ	BE			235	ONEDLY	DEY			
FCES	DO	FD		2314		BRE	ONEDL．Y		
FCES	AC	20	co	235	WRTAPE	LDY	TAPEOUT		
FCEB	AO	EC		236		LDY	\＃s：2C		
FCEA	CA			237		DEY			
FCER	60			238		RTS			
FCEC	A 2.	O日		239	RDEYTE	LDX	\＃30E		
FCEE	4 E			240	RDBYTE	PHA			
FCEF	20	FA	F6：	241		JER	RDE日IT		
FCFE	6E			242		PLA			
FCF3	2 A			243		ROL	A		
FCF4－	AO：	3 A		244		LDY	\＃83A		
FCFE	CA			245		DEX			
FCF？	DO	F5		246		BNE	RDEYT2		
FCFG	60			247		RTS			
FCFA	20	$F D$	FC	24日	RDEBIT	JSR	RDEIT		
FCFD	咟			249	RDBIT	DEY			
FCFE	AD	60	CO	250		LDA	TAPEIN		
FD01	45	2F		251		EOR	LAGTIN		
FDO3：	10	FB		252		BFL	RDEIT		
FDOS：	45	aF		253		EGA	LASTIN		
FDOT	85	EF		254		STA	LAETIN		
FDO9	C0	60		285		CPY	\＃\＃EO		
FDOE	60			256		RTS			
FDOC：	A4	24		257	RDKEY	LDV	CH		
FDOE．	E1	2B		25B		LDA	（BASL） Y Y		
FD10	4 E			259		PHA			
FD11	29	3 F		250		AND	\＃53F		
FD13	08	40		2． 1		ORA	3『40		
FD15	91	2E		262		STA	（BASL），V		
FDi7	6日			263		PLA			
FDiE	65	3 E	00	264		JMP	（KSINL）		
FD1E	Ed	4 E	7	265	KEYIN	INE	RNDL		
FD1D：	DO	O2		266		GNE	KEVIN2		
FD1F	E6	4F		267		INC	FNDH		
FD21	20	00	CO	266	MEVINE	EIT	KBD	READ	KEVBDARD
FD24	10	F5		269		EPL	KEYIN		
FD26	91	2 E		270		STA．	（EASL），${ }^{\text {r }}$		
FD2E：	AD	00	co	271		LDA	MED		
FDER	$2 C$	10	CO	272		日IT	KEDETRE		
FDEE	60			273		RTS			
FDEF	20	de	FD	274	ESC	JSR	RDKEY		
FD32＇	20	A5	FE	275		JSR	ESCHEW		
FD35	20	OC	FD	276	RDCHAR	JSPR	RDMEY		
FD3日	C9	98		277		CMF	H59日		
FD3A．	FO	F3		278		BEG	ESC		
FD3C	60			279		RTS			
FD3D	A5	32		2el	NDTCF	PARE	INVFLG		
FDJF	4日			202		PHA			
ED40	A ${ }^{\text {a }}$	FF		263		L．DA	\＃\＄FF		
FD42	ES	32		294		STA I	INVFLG		
FD44	ED	00	OR	295		LDA 1	IN，x		
FD47	20	ED	FD	296		JSF C	COUT		
FDAA	66			2 E 7		PLA			
FD4H	E5	32		288		STA I	INVFLG		

FD4D：	HD	00	Oe	284		LDA	IN，X			
FD50	C9	㫙		290		CMP	\＃5日			
FDS2．	Fo	10		291		BEG	BCKSP＇			
FDS4	C5	98		292		CMP	\＃ \％$^{\text {a }}$			
FDS 6	F0	OA		293		BEG	CANCEL			
FDSE	EO	FE		294		CPA	\＃ 5 FE			
FDSA	90	03		295		BCC	NOTCRI			
FDSC	20	3A	FF	296		JSR	BELL			
FDSF	EE			297	NOTCA1	INX				
FDGO	DO	13		298		BNE	NXTCHAR			
FDAL	AC	DE		299	CANCEL	LDA	HSDC			
FD64	20	ED	FD	300		JGR	cout			
FD67	20	㫙	FD	301	GETLNZ	JSR	CRDUT			
FDGA	45	33		302	GETLN	LDA	PRDMPT			
FDGC	20	ED	FD	303		JSA	cout			
FDbF	A2	01		304		LDX	＊＊ 01			
FD71	日A			305	BCKSPC	TXA				
FD72	FO	F3		306		EEG	GETLNZ			
FD74	CA			307		DEX				
FD75	20	35	FD	301	NXTCHAR	JSR	RDCHAR			
FD7	69	95		307		CMP	\＃495			
FD7A	DO	02		310		GNE	CAFTST			
FD76	日1	2 B		311		LDA	（BAELI，Y			
FD7E	CP	EO		312	CAPTST	CMP	\＃ EO $^{\text {a }}$			
FDBO	90	O2		313		BCC	ADDINP			
FDEZ	29	DF		314		AND	\＃\＃DF	SHIFT TC	UPPER	CABE
FDEA	70	00	02	315	ADDINF	STA	IN，X			
FDa7	C9	8 D		316		CMP	\＃\＃日0			
FDE9	DO	BE		317		BNE	NOTCR			
FDEE	20	96	FC	$31 日$		J5F	CLREDL			
FDEE	AP	日		319	CRDUT	LDA	แsad			
FD90	DO	5 B		320		ENE	COUT			
FD92：	A4	3 D		321	PRAI	LDY	AIH			
FD94	Ab	3 C		322		LDX	A1L			
FD96	20	日E	FD	323	PRYX2	JSR	CROUT			
FD99	20	40	Fi	324		JSR	PRNTYX			
FD9C	AO	00		325		LDr	W 100			
FDGE	$A 9$	$A D$		326		L．DA	\＄SAD			
$\begin{aligned} & \text { FDAO } \\ & \text { FDAB } \end{aligned}$	4 C		FD	$\begin{aligned} & 327 \\ & \frac{325}{2} \end{aligned}$		JHP PAGE	COUT			
FDA3	A5	35		329	XAME	LDA	AIL			
FDAF	09	07		330		ORA	\＃807			
FDA7	65	3 E		331		STA	AEL			
FDAP	A5	3 D		332		LDA	A1H			
FDAB	65	3F		333		STA	A 2 H			
FDAD	AS	36		335	MODECHK	LDA	A1L			
FDAF：	29	07		335		AND	\＃\＄07			
FDE 1 ＝	DO	03		336		BNE	datadut			
FD83	20	92	FD	337	XAM	JSR	PRal			
FDB＇	A ${ }^{\text {P }}$	40		338	DATADUT	LDA	\＃SAO			
FDE日	20	ED	$F D$	339		JSR	cout			
FDEB：	日1	36		340		LDA	（A1L）Y			
FDBD	20	DA	FD	341		JER	PRDYTE			
FDCO	20	BA	FC	342		J58	NXTA1			
FDC3	90.	Ea		343		BCC	Modechk			
FDC5	60			344	RTE4C	RTS				
FDCe	4 A			345	KAMPM	LSR	A			
FDC7	90	EA		346		ECC	XAM			
FDCP	4 A			347		LSR	A			
FDCA	4A			348		LSR	A			
FDCE	As	3 P		349		LDA	$A 2$.			
FDCD	90	02		380		BCC	ADD			
FDCF	49	FF		351		EQR	4sFF			
FDDI	65	3C		352	$A D D$	ADC	AIL			
FDD3	48			353		PHA				
FDD4	A^{5}	ED		354		LDA	\＃＊3D			
FDDE	20	ED	FD	355		JSR	cout			
FDD9	6E			356		PLA				
FDDA	4 E			357	PREVTE	PHA				
FDDE	4A			358		Lef	A			
FDDC	aA			359		LER	A			
FDDD	$4{ }_{4}$			360		LSR	A			
FDDE	4 A			361		LSR	A			

FDDF	20	ES FD	362		JSR	PRHEXZ
FDE2	61		363		PLA	
FDES	29	OF	364	PRHEX	AND	4sof
FDES	09	BO	365	PRHEXZ	ORA	＊s80
FDET	C9	EA	3 bt		CHP	\＃SEA
FDE9	90	02	367		BCC	cout
FDEE	69	Ot	366		ADC	\＃30t
FDED	bc	3600	369	cout	गMP	（CSWL）
FDFO	C9	AO	370	CDUTT 1	CMP	＊SAO
FDFE	90	02	371		ECC	coutz
FDF 4	25	32	372		AND	INVFLE
FDF	94	35	373	CDUTZ	STY	YSAV：
FDFE	4 A		374		PHA	
FDF9	20	78 FB	375		JSR	YIDWAIT，GO CHECK FOR PAUSE
FDFC	6 B		376		PLA	
FDFD	A4	35	377		LDY	YSAVI
FDFF	60		376		RTE	
FEOO			379		PAQE	
FEOU	Co	34	399	BLI	DEC	Y5AY
FE02	FO	9 F	391			XAME
FE04	CA．		3 BC	BLANH	DEX	
FEOS	DO	16	393		GNE	EETMDZ
FEO7	C9	BA	394		CMP	\＃SBA
FE09	Do	88	3 es		UNE	XAMPM
FEOE	25	31	38t	STOR	日TA	MODE
FEOD	A5	3E	3487		LDA	A 21
FEOF	91	40	388		STA	（ABL）${ }^{\text {a }}$ Y
FE：1	E6	40	389		INC	A 3 L
FE13	DO	02	390		BNE	RTG5
FE15	E6	41	391		INC	A 3 H
FE17	60		3 3\％	ATSS	ATS	
FE：${ }^{\text {P }}$	A 4	34	393	SETMODE	LDY	YSAV
FEIA．	89	FF 01	394		LDA	$1 N-1, Y$
FEID：	95	71	399	SETMDL	ETA	MUDE
FE1F	60		396		RTS	
FE20	AR	01	397	LT	LDX	\＃\＄01
FE22	85	3E	39日	LTE	LDA	A2L，X
FE24	95	42	399		STA	$A^{4} \mathrm{~L}, \mathrm{C}$
FE20：	75	44	400		STA	ASL．${ }^{\text {a }}$
FEze	CA		401		DEX	
FE29	10	F7	402		BPL	LTE
FE2B	60		403		RTS	
FE20．	51	3 C	404	hove	LDA	［all． 4
FE2E	91	42	405		STA	（A4L），Y
FEDO	20	84 FC	406		JSFi	NXTAA
FE33	90	F7	407		日cc	MUVE
FE35	60		408		RTS	
FE3S	a1	3 C	409	VFY	LDA	（AIL） Y
FE38	D1	4 E	410		CMP	（AALL，Y
FE3A	FO	15	411		日EG	VFYaK．
FESC	20	92 FD	412		JSR	PRAI
FESF	日 1	$3 C$	413		LDA	（ALL）Y
FE41	20	$D A_{\text {F }}$ FD	414		J．jp	PREYTE
FE44	A9	$A G$	415		LDA	\＃3AO
FE46	20	ED FD	416		JSR	COUT
FE47	A9	A日	417		LDA	\＃कAB
FE4B	20	ED FD	416		J5R	COUT
FE4E	I1	42	419		LUA	（AAL），${ }^{\text {P }}$
FESO	20	DA FD	420		JSR	PREYTE
FES ${ }^{\text {P }}$	A9	49	421		CDA	\＃say
FE55	20	ED FD	42 L		USR	cout
FE5E	20	D4 FG	423	VEYOK	USR．	NUXTAA
FESE	70	D9	424		BCC	NFY
FESD	do		429		RTS	
FESE．	20	75 FE	426	LIST	JSR	AlPC
FE61	A9	14	427		LDA	H214
FE63：	48		42 B	LISTE	PHA	
FE64 4	20	D0 FB	429		JGR	INSTDSP
FE67	20	53 Fq	430		JER	PCAD 1
FEGA：	95	3 A	431		5 Sta	PCL
FEGC：	94	38	4 ab		ETY	PCH
FEGE，	64		430		PLA	
FEGF	39		434		SEC	

FETO		01	439		Sac	（1501		
FET2	79	EF	436		BNE	LIヨTス		
FETA	S0		437		－15			
FET5			435		PAGE			
EETS	EA		439	AIPC	TXA			
FE76	F0	07	440		BEG	A1PCRTS		
EE7日	ES	3	441	AIPCLF	LDA	A1L X		
FE7A	75	34	4.2 L		STA	FCL） 8		
FEPC	CA		4.42		DEX			
FETD	10	F9	4.46		SPL	A1PCLP		
FE7F	60		4.45	ALPCRTE	ATS			
FEEO	AD	3F	446	BETINV	LDY	\＃ち3F		
FE日E	D0	Q2	447		BNE	SETIFLG		
FEE4	AO	FE	44 C	EETNORM	LDY	WSFF		
FEEb	日4	32	449	SET IFLG	STY	INVFLG		
FE日E	60		450		RTS			
FEE？	A9	OD	451	EETK日D	LDA	\＃500		
FEBB	85	3E	452	INPGRT	STA	AEL		
FEED	A2	3日	453	INPRT	LDX	\＃1人SWL		
FEEF	AD	1 E	454		LTYY	WKEYIN		
FE91	D0	OH	455		DNE	IGPRT		
FE93	A9	00	4， 56	SETVID	LDA	\＄200		
FE95	日5	$3 E$	457	OUTPORT	इTA	ARL		
EES？	AE	31	45 B	OUTART	LDX	＊CSWL		
FE99	40	FQ	459		LDY	\＃COUT1		
FE9］	A5	3 E	4 ab	IDPRT	LDA	ARL		
FE9D	29	QF	461		AND	\＃： 0 F		
FEGF	F0	Qd	462		BEQ	IDPRT1		
FEAI	$0 ¢$	co	463		DRA	¢IGADR／2		
FEA3	40	00	464		LDY	\＃600		
FEAS	F0	OE	465		BEQ	1 DPRT2		
FEAT	A9	FD	4bb	IDPATI	LDA	\＃COUT1／2		
FEA			467	IDPRTE	EGU	＋		
FEAT	94	00	468		STY	LDCO， 8	494， 300	
FEAB	45	O：	489		STA	LOC 1 ， X	\＄95． 301	
FEAD	60		470		ATG			
FEAE	EA		471		NロP			
FEAF	EA		472		NDP			
FEBO	$4 C$	00 EQ	473	XBASIC	JTIF	BASIC		
FEE3	4 C	03 EO	474	BASCDNT	JHP	BASICE		
FEE6	20	75 FE	475	QO	ASR	A 1 PC		
FEB 9	20	3F FF	476		JER	RESTURE		
FEBC	bc	3A OO	477		JMP	（PCL）		
FEBF	45	D7 FA	47 E	REGZ	$J M P$	REGDSP		
FECS	b0		479	TRACE	RTS			
FEC3			4 EO	－TRACE	15	Gane		
FEC3	EA		491		NOP			
FEC．4	60		4 AR	QTEP安	RTS		STEF IS	QONE
FECS	EA		483		NDP			
FECG	E．A		434		NOP			
FECC7：	EA		$4 \mathrm{P5}$		NCP			
FECE	EA		486		NOP			
FEC9	EA		4 A 7		NOP			
$\begin{aligned} & \text { FECA } \\ & \text { FECD } \end{aligned}$	4 C	FE O3	$\begin{aligned} & 498 \\ & 488 \end{aligned}$	USR	$\begin{aligned} & \triangle M P \\ & P A G E \end{aligned}$	USRADR		
FE，CD	A9	40	490	WFITE	LDA	12440		
FECF	30	CF FC	491		JSR	HEADR		
FEDE	AO	27	492		LDY	\＃さこ7		
FED4	A^{2}	00	A 95	WR1	LDX	4＊00		
FED	41	3C	474		EDA	$(A 1 L T)$		
FEDE	4 B		495		PHA			
FED ${ }^{\text {F }}$	A！	3 C	476		LDA	（A1L，X）		
FEDE	20	ED FE	497		USR	WREVTE		
FEDE	20	BA FC	490		JEA	NXTAS		
FEE1	A0	1D	499		LDY	\＃51D		
FEE3	BE		590		PLA			
FEE4	90	EE	501		BCC	HR1		
FEEG	AO	22	SO2		LDY	H522		
FEEE－	20	ED FE	503		JSA	URAVVTE		
EEEE	FQ	4D	504		BEG	日ELL		
FEED	AE	10	505	WREVTE	LDX	\＃\＃10		
FEEF	OA		S0e	WREYT2	ASL	A		
FEFO：	20	De：FC	507		JSR	WRBIT		

FEF3	DO	FA		50日		ENE	WREYTR
FEFS	60			509		RT5	
FEF6	20	00 F	FE	510	CRMON	JSR 1	日L 1
FEF？	65			511		PLA	
FEFA	6日			512		PLA	
FEFE	DO	SC		513		BNE M	MONZ
FEFD	20	FA F	FC	514	FEAD	JER R	RDEBIT
FFOO	A 4	16		515		LDA ${ }^{\text {a }}$	＊＊16
FFO2	20	C7	FC	Sid		JGR H	HEADR
FFO5	85	2E		517		STA C	CHMSUM
FF07	20	FA	FC	518		JSA 8	RD2日IT
FFOA	AD	24		514	ADE	LDY	＊s24
FFOC	20	$F D$	FC	520		JSA ${ }^{\text {a }}$	RDBIT
FFOF	80	F9		521		ACE	RD2
FFil	20	FD	FC	92 L		JER R	RDEIT
FF14	A 0	$3{ }^{3}$		523		LDY	\＃5 38
FFit	20	EC	FC	524	RD3	JSF	RDBYTE
FFIT	E1	$3 C$		5 E5		STA	（AIL，X）
FF18	45	2E		526		EOR	CHMSUA
FFID	95	2E		527		STA	CHREUM
FFIF	20	BA	FC	528		USR	NXTAI
FF22	AO	35		527		LDY	\＃335
FF24	90	FO		530		ECC	RD3
FF26	20	EC	FC	531		USR	RDEYTE
FF24	C5	2E		532		CTMP	CHWEUM
FF2b	FO	00		533		EEG	BELL
FFED	A 4	C5		534	PRERF	LDA	asc5
FF2F	20	ED	FI	535		JSA	cout
FF32	A9	D2		536		LDA	\＃3D2
FF34	20	ED	FD	537		J SR	COUT
FE37	20	ED	FD	538		JGR	COUT
EF3A	A． 9	日 9		534	日ELL	LDA	\＃se7
FF3C	4 C		FD	540		JMR	cIUT
FF3F				541		PACE	
FF3F	A5	48		542	RESTORE	LDA	statue
FFA1	4 A			543		FHA	
FFFA2．	AS	4.5		544		LDA	ASH
FFA4	Ab	4 t		545	RESTA 1	LDX	XREG
FFAE	A4	47		54 B		LDY	YREG
FF4日：	2 B			547		PLP	
FF49：	60			548		RTS	
FF4A	95	45		549	SAVE	STA	A5H
FFAC	66	46		550	5AVI	STK	XREG
FF4E	84.	$4{ }^{7}$		551		STY	YREG
FFY0：	OE			552		PHP	
FFS 1 ：	58			553		PLA	
FFS2：	日 5	48		554		5 TA	status
FFSA．	BA			555		T6\％	
FFSS	86	49		596		518	SPNT
FF59，	DE			557		CLD	
FF59：	60			558		RTS	
FFS9	20	B4	FE	559	QLDEST	U5R	SETNORM
FFSC．	20	$2 F$	FH	350		JSP	INIT
FFSF	20	93	FE	561		USR	BETVID
FFbt	20	89	FE	562 563		J5月 PAGE	SETKaD
FFb 5				563 584		PAGE	
FF65	DE			584 565	MON	CLD	
EF 6 b	20		FF	565		USR	
FF6 69	A9			506	MONZ	LDA	\＃\＄AA Promet
FFGE	日 20			567		STA	PROMFT
FF60	20	67	FD	505		JER	GETLNZ
FF70	20	C7	FF	569 570		JSR	ZMODE
FF73	20	A7	FF	570	极TITM	JSF	GETNUM
FE76	B4	4.34		571		STY	YSAV
FF78	AD	17		572		LDY	日5 17
FFFA	日			573	OHRSACH	DEY	
FF76	30	Ee		574		EMI	MON
FFFD	D9	OC	FF	575		CMP	CHRTEL ${ }^{\text {Y }}$
FFEO	DO	0 FE		57%		BNE	CHRSRCH
FFE2	20	OE	FF	577		$J 5 R$	tosul
FFES	4	434		57 E		LDY	YSAO
FFET	45	－ 73		579		JHF	NXTITM
FFEA	A 2	¢ 03		580	D1G	LDX	\＃s03

	FFEC	DA	5 El		ASL	A					
	FFe日	OA	5日2		ASL	A					
－	FFEE	OA	5 53		ASL	A					
	FFEF	OA	$5 \mathrm{B4} 4$		ASL	A					
1	FFGO	OA	SE5	NATEIT	ASL	A					
	FFG1	26 3E	5 E 6		ROL	A 2					
－	FF9？	26 3F	SE		R만	A2H					
，	FF95	CA	\＄8日		DEX						
n－ne	FF96．	10 FE	589		日PL	NXTE1T					
I	FF5日：	A5 31	590	NXTBAS	LDA	MODE					
	F\％9A	DO OE	591		BNE	NXTESE					
	FFOC．		59E	＊							
	FFOC	B5 3F	593		LDA	A2H． 8					
	FFFE		59\％in	$*$							
	FFGE	923 D	395		STA	A2H．${ }^{\text {a }}$					
n	FFAQ：		596	＊							
－	FFAO	9541	597		STA	A3HIK					
	FFAZ	EE	598	NXTD52	INX						
	FFA3	F0 F3	596		BEG	NXTBAS					
－	FFAE	DO OS	800		BNE	NXTCHE					
	PFAT：	$A 200$	601	GETNUM	LDK	\＃\＃\％0					
	FFAP	Et 3E	602		STX	A 21					
P	FFAE	B6 3F	302		日TX	AEH					
－	FFAD	B90002	604	NXTCHE	LDA	IN．Y					
	FFDO	CE	605		Iey						
5 國	FFEI	49 BO	606		EOR	\＃580					
T	FFR3－	C\％OA	507		CMP	\＃\＃OA					
	FFBS：	90 D3	608		BCC	D16					
－	FFEP7	69 BE	809		ADC	\＃3 88					
	FFB9 9	C9 EA	610		CMP	HnFA					
	EFBE	BO CD	6il		BCS	DIG					
	FFED	80	bic		RTS						
0	FFHE	A ${ }^{\circ} \mathrm{FE}$	619	TOSUE	CDA	H60／256					
1－	FFCO：	4 E	614		PHA						
	FFCC1	B9，E， 3 FF	－15		LDA	Subtaliy					
	FFC4：	4 A	616		PHA						
\％	RFCE	A5 31	417		LDA	HCDE					
	FFC7	$A 0 \quad 00$	E1日	ZNDDE	LDY	\＃800					
\square	FFC\％	E4 31	615		STY	MODE					
E	FFCB	60	620		FTS						
	FFEC		521		FAEE						
	FFCG	BC	5\％	CHIRTBL	DFE	3 BC					
P－	FFCD	D2	－23		DFE	512					
$=$	FFCE	8E	524		DFE	5 SE					
	FFCF	E2	sE5		DFE	\＄82	T	CMB	NDW	LIKE	UsF
－	EFDO	EF	¢2E		DFB	tEF					
	FFDI．	c．4	कह7		DFE	16.4					
	FFD2	12	B2B		DFE	＊日2	E	CRID	FOLH	LIKE	USP
	FED3	A9	－25		DFE	5 ¢ ${ }^{\text {c }}$					
0	FFDa	EE	630		DFE	\＄BD					
－	FFDS	Ab	631		DFE	SAc					
	FFDE	4.4	632		DFE	\＄ A_{4}					
\square	FFD7	OE	635		DFE	406					
5	FFDE	75	634		DFE	595					
	FFDP，	07	635		DFE	\＄07					
－	FFDA	02	632		DFS	402					
－	FFDB	05	63\％		DFE	505					
－	FFDC	FO	335		DFE	5F0					
	FFDD	DC	± 39		DFE	500					
\pm	FFDE	Eb	540		DFE	5EE					
5	FFDF	Pa	645		DFE	\＄93					
	FFEO	47	625		DFB	㭳7					
－	FFEI	Ea	643		DFE	事吕					
3	FFEE	98	644		DFB	849					
	FFE3	B2	645	SUBTEL	DFE	5日2					
	FFEA	c9	645		DFE	3ca					
$\underline{3}$	FFES	BE	847		DFE	\＄BE					
\square	FFES	E1	648		DFP	\＄ 21					
	FFE？	35	449		DFS	＊35					
\square	FEEE	BC	690		DFE	＊日c					
3	FFE？	56	651		DFE	sc． 4					
	FPEA	96	652		DFE	\＄5b					
－	FFEB	AF	653		DFE	bAF					

FFEC：	17	654	DFE	\＄17
FFED	17	655	DFE	517
FFEE	\18	65 b	DFE	s21
FFEF	17	6＊7	DFE	61F
FFFO	E2	65日	DFB	＊日3
FRFI	7 F	699	DFE	57 F
FFFE	5 D	bso	DFB	351
FFF3	EC	Sel	DFE	56.
FFFA	日S	S62	DFA	\＄15
FFE 5	FC	50.3	DFE	\＄FC
FEFB	17	4et 4	DFE	517
FFF\％	17	ba5	DFB	817
FFFE	F5	buta	DFB	\＄F5
FFF\％	06	－6\％	DFE	402
FFFA	FD 03	2.60	DWI	NMI
FFFC	62 FA	667	DW	RESET
FFFE	40 FA	570	DW	IRG
EMDAS				

MONITOR ROM LISTING

F849\％	24	03	I 41		AND	4503		
F648：	49	4.4	144		QRA	1504		GENERATE GEASH＝0000U1PG
E64D：	85	27	145		5TA	GRASE		NND GBASL＝HDEDEO00
P64F：	6日		146		PLA			AND GEASL＝EDDEDEUUO
F850 5	29	1 18	147		AND	6516		
P652：	90	02	148		BCC	GBCALC		
Flas ：	69	75	149		ADC	\＄57\％		
FiS6：	85	26	150	GECALC	STA	GEASL		
E450：	UA		151		A5 4	A		
F659：	QA		152		ASL．	A		
F65A：	45	20	153		ORA	GEASL		
FGJC：	85	26	154		STA	GBASL		
F85E：	60		155		RTS			
Es5F：	A5	3u	126	NXTCOL	LDA	COLOR		LNCREMENT COLOK B
Pö61－	16		157		CLC			
Ed62f	69	13	15 E		ADC	4503		
E664\％	29	0 F	154	SETCOL	AND	4505		SETS COLOR＝17＊A MOD I
श 860 ：	85	$3 u$	164		STA	COLOR		H HALF ByTES OF COLOR EJUAL
Fubd：	UA		161		ASL	A		BOTH HALF BYTES OF COEOR EQUAL
F869：	UA		162		ASL	${ }^{\text {A }}$		
F66A：	UA		163		ASL	A		
F号白日：	UA		2.64		ASL			
PLbC：	45	30	165		CRA	EOLOR		
FCbE：	d 5	30	166		STA	COLOR		
Fo70：	60		167		RTS			
For1：	4 A		164	SCRN	L5R	A		READ SCREEN Y－COORD／2
Fd72；	46		169		PH？			SAVE L5B（CARRY）
F873：	2 L	47	Pe 174		JSF	GBASCALC		GALC BASE ADDRESS
F876：	B1	26	171		LDA	（GBASL），Y		RESTORE LSB FRCM LAFRY
F878	20		172		PLE			
F879	4	44	178	SCAB2	LSE	HTMSNZ		IE EVEN，USE LIN
Fs／B士 P87C	4.4 48		174		LSR	A		
Fs70：	4 A		176		LSR	A		SHIFT HTGH HALF BYTE DCWN
E37E；	4 A		177		LSR	A		
EdTF：	29	UF	17 E	RTHSKZ	AND	\＃ 50 F		MASだ 4－EITS
F681：	60		179		FTS			
Fdoz：	A6	3A	181	INSDS 1	LDX	PCI		PRINT PCL，H
Fü4：	A 4	3 c	482		LDY	PCH		
E886：	20	96	ED 167		JSR	PEYX2		
F889：	20	46	P9 ID：		J5R	PRELIK		FOLLOWED 日Y A BLAん\％
FB8C：	A1	3 A	184		LDA	（PCL，X）		GET OP CGDE
Fサ3E	A6		185	INSDS2	TAY			
FddFi	4 A		Id 6		L98	A		EVEN／ODD TEST
E990：	9 y	43	147		aCL	IEVEN		
F992：	68		168		HOR	ג		9IT 1 TEST
Foy3土	Eu	İ	189		ECS	ERR		8X8XXX11 INVALID O
F日Y5t	C5	A 2	194		CMP	\＃SAZ		
Fu97：	FU	NC	191		日EQ	ERR		QPCODE 589 INVALID
F649：	24	37	192		AND	4887		NASK 日ITS CAROY FQR E／R TEST
F69］：	4 A		193	IEVEN	L5\％	A		LSd INTO CARRY FGR LIT RESI
FSSC：	AA		194		IAX			
F690：	ED	62	59195		L．UA	EMTI，${ }_{\text {SCR }}$		B／L H－Byar or CAFAY
FBAO：	2 L	79	Fin 196		JSB	SCRN2		k／L H－Bx\％E O．CARMI
PEAJ：	DU	04	197		BNE	GETFNT		
FBA5\％	Au	\＃1，	190	ERF	LDY	7580		
EbA 17	A 9	Qu	199		LDA	750		SET FRINT ECRMAA INEEX of
FbA9：	AA		200	GETEMT	TAX			
E8AAI	ED	A6	PG 201		LDA	FHT2， X		INDEX IUTU FRINR FORNA
FSAD：	15	2E	202		STA	EORMAT		SAVE PQR ADR RIELD FCRMAHING
FbaEt	29	03	203 204	$*$	AND	$\begin{gathered} \text { FSU3} \\ 12=1 \quad 3 Y T E, \end{gathered}$		MASK FOR 2－BIT LENGI日 BYTE， $2=3$ 日Y゙5E）
Fagl：	35	2F	205		STA	LENGTH		
F細方：	98		246		TYA			QPCODE
EaE4：	29	8F	207		AND	458 F		HASK FQR 1XXXILIUIEST
EdB6：	AA		204		TAX			
268 $7:$	98		249		TYA			OPCODE TO A AGAIN
Fbab：	Au	«3	210		LDY	\％ 503		
F日成：	Eu	SA	211		CEX	\＄$\$ 8 \mathrm{~A}$		
FGEC：	EV	U日	212		8E． 6	MANDX3		
EdBE：	4 A		213	MSENEX 1	LSA	A		
F8BE；	9 J	リo	214		SCC	MNADX3		POAM INDEX INTE MNEMONIC IAILE
ESC1：	4 A		215		LSR	A		

YロE2：	4A		216	MMNDKZ	LSF	A． $+1320$	1） $1 \times x 8 L 610 \rightarrow 300 L u 1 x \times k$
ERCA：	－15	24	217		एEA	132d	2）$x X X Y Y Y u t=36 u 11+x \times x$
\％ecs：	4 t		210		TEY		
FaCb：	D0	FA	212		3NE	Whrokz	4） XXXVYSEUO
FdC8：	Co		220		374		
FOC9：	86		221	MNSDXI	DEY		
F6CA：	50	F^{3}	222		ANE	2NPADS	
EACC：	40		229		RTS		
FBCD：	F\％	Ff Fi	234		DFE	SEF，SEF，SEF＇	
FBDO：	20	42 FB	225	INATESP	J5R	TNGCSI	SEN EMT，LEF 3 XTSE
EแD3：	4 ${ }^{\text {H }}$		225		HHCN		SAVE ISNEMOHIE IABLE IALEX
EबD 4 ：	B1	JA	221	PRATCP	LEA	（PCL）， 7	
ESDE：	Tu	DA 65	228		J5，	PREYTE．	
9609	A2	D1	229		LCOX	－Su1	PRINT 4 BLALES
P80日	30	4A．E4	210	PHNTB L	ISR	9RBL／2	
EGLE）	54	$2 F$	211		Coy	LEAGTE	PRINT SNST（1－3 ョYTES）
Fotic	C8		231		İY		IG \＆ 22 CHR FTELC
FטE1F	40	PI	231		3C5	PRNTOR	
FaE if	4.2	43	214		$563 x$	－SU3	CIIAR COUIT PCR ANE：TGNTC ARENR
Poes：	LH	41	235		（Ey	$45 \mathrm{CH}{ }^{\text {a }}$	
Fobis	94	E2	23.6		HCC	PRNTE L	
PHE9	184		231		PLA		GELCOVEP YNEMDSIC ISDEX
E日EA：	Ad		2318		TAY		
FUEG：	B4	24 24	229		LDA	MAELSL，Y	
FtEE：	85	20	250		STA	CHNEM	FECCH 3－CHAR GNERONIC
P日fu：	89	U1 FA	242		LDA，	MNEME，Y	（FACKED IN 2－EY＇teS）
FBf 5	dう	20	242		STA	BMSEM	
F日F5：	－ 5	10	243	PFiom．	LEA	25000	
EDF 1 ：	AG	45	244		LEY	4505	
F5P9：	U6	2－1	243	PENTE	ASE	RUTEEM	SHIET 5 ETTS DF
Fopb：	26	It	246		501	LIMAEM	CgABSCHER SNTE A
EAED：	2π		247		ROL	A	TCLEARE OARRY ${ }^{\text {I }}$
EaEG：	ba		248		DEY		
EAFF：	Du	Fb	249		EME	EfMN2	
Pgul：	04	3 F	250		$A D C$	\＄5日	ADD＂ZV OEFSET
F90J．	20	ED FL	751		ISR	EDUT	DUTPUT A CHAR［96 SNE：
P900：	EA		252		Les		
F507：	D4	EL	251		すNE	Feraj	
EyJMs	2 U	42 ES	254		358	PRELENK	TUTEIJT I BLANKS
Pgoc：	4.4	25	235		Lidy	LEsGIV	
FYUE 5	λ^{2}	1雩	236		LDX	\＃SU6	CUT EOS L PERMA\％ 21.5
F910．	$E .4$	Wh	25	PRNDRI	CFX	esua	
F912：	Fil	IE	250		BEG	Ffonchs	IP $x=3$ 2HEA SDNR．
$F \geqslant 14:$	05	2E	2\％ 8		－3L	ECRMAI	
E916	96	UE	240		BCO	Prabres	
6918 C	35	B． $\mathrm{E}=$	W1		L．DA	CHARL－I ． S	
F415	2）	EL ED	262		ISE	COUV	
FUEE：	BL	（1）fis	$2{ }^{2} 3$		LDA	－HAR2－1． 8	
［92］：	Fu	aI	264		9EC	PBACRI	
FG2］：	20	砍 EQ	267		J 6 \％	CUUP	
R420：	CA．		200	PRODR3	2EX		
F427：	bu	E	26.		Blde	FAACRI	
F929：	B6）		2631		R2S		
Fy＊A＝	85		269	QRACR 4	DEY		
pycas	14．	矿 ${ }_{\text {DA }}$	2711		3HI	FFADR2 PKSYTE	
1934：	A 5	IE	272	PRNDR5	450 A	ECEMAT	
E942：	C9	Ed	27］		Sx2	45E	HANDLE REL SOR HODE
8834：	日1	3A	$2 / 4$		TDA	（PCE）${ }^{\circ}$	SPECIAT（PEINT IARGET，
F920：	94	E2	275		BCC	ERADEG	NOT DPESET
pyJd	20	36． 29	216	GELADR	Jsa	FCADII	
1938＝	SA		277		TAX		RCL，PCH＋OESET +2 TO A Y Y
E9JCt	Ed		278		121x		
P930\％	EL	01	279		gNE	PRNTYX	＋1 $70 \quad \mathbf{~} 2 \times \lambda$
E $\rightarrow 3 E$ ，	Cib		2 du		IHY		
p94ur	98		2 El	PROTYX	TYA		
Batis：	24	DA PL	282	PFNEAX	JSit	PRBYTE	JUTFUT $2 \pi R G E T$ bDA
Es44．	8 A		263	PRNSTX	IXA		IF BPASCH ANR EETHRC
E9431	4 C	DA PD	284		348	PREYME	
F948：	A2		285	PNBLN：	LDX	\＄50］	BLANS COLSNT
F9］A ：	A）	A u	？dia	PREL2	Lロत	45 A	LOAD A SEACE
Fgac：	24	ED FD	287	PRBLI	1SR	CQUT	OUFPUS A ЭLANK
Fリ4F：	$C A$		2 ga		DEX		

FA7D：	84		401		DEY		JMP TO GRANEH OR
FA7E：	10	F8	402		BPL	X01	MEGANCH EBCM XEQ．
FABU：	20	3F pe	403		359	ReSTCGE	AESTGRE USUT REG CONTENWS．
PA83：	4 C	3C DO	4 U4		JMP	SOTN2	XEC USER OP PFCM RAM
FA86：	b5	45	405	IRQ	STA	ACC	（RETLEN TO WERANCH
FAdas：	6 B		400		PLA		
FABS：	48		407		PHA		－+1 RC HANDLER．
PAdA：	UA		406		ASt．	A	
FAbla：	0 A		4U9		ASL	A	
EABC：	0 A		410		ASL	A	
PABD ：	30	43	411		日M：	BREAK	TEST POE SEEAE
PABF ：	6 C	FE 13	412		JMF	（2AQLOC）	USEA FOCTINE YECTOR IN HAM
FA92：	2甘		413	BREAK	PLF		
FA9］：	211	$4 C$ PR	417		JSR	SAV1	SAVE REG＇S ON BRENK
FA96：	68		415		PLA		INCLUDING PC
FAY）：	85	3 A	416		STA	PCL	
EAY9：	64		417		PLA		
PA9A ：	85	3E	4 Lb		－TVA	PCH	
EA9C：	20	32 Pb	419	XBRK	35 R	INSUS 1	PRINT OSER PC＋
FA95：	20	DA EA	42 u		J5R	RGDSP 1	ASD REG＇S
PAA2：	4 C		421		JMF	MON	CS 20 MCNITGR
EAA5：	14		422	KRTI	CLS		
FAAE：	60		A23		PLA		ЗIMULATE ST：㫙 EXPECTING
FAA ${ }^{\text {］}}$ ：	d5	4甘	424		コTA	STATUS	STALUS FROM 3RACA，THEH RTS
FAA9：	da		425	SRTS	PLA		FTS STMLLITIOG
EAAA ：	d5	3 A	426		5 TA	PCL	EXTBACI FC FAGM STACK
EAAC：	65		427		PLA		AND GFDATE PC EY I（LEN＝u）
EAAD：	85	38	42 d	PCINER	STA	PCH	
FAAE：	A5	2 F	429	ECINC：	LDA	LENGTH	UPDATE PC 日 4 LEN
FAB1：	2 L	56 Fz	430		JSR	zcadj 3	
FAB4：	84	ว่	431		5 ST	PCH	
FA36：	$1{ }^{1}$		412		SLC		
FAB7：	90	14	433		BCC	MEWPCL	
FABY：	16		434	xusp	CLC		
EABA ：	20	34 E9	4.35		JSR	PCALJ：	UPDATE PC AND PESH
PABD：	A．		430		IAX		DNTLE SIAJE EOE
FABE：	95		437		TYA		JSk 31MULAごE
FABE：	$4{ }^{4}$		4 3 A		PHE		
FACO：	4 A．		$43 y$		T8A		
FAC1：	4 A		440		PHa		
EACZ：	Au	02	441		LDY	＋302	
EAC4：	1 d		442	X，ME	ELC		
FAE5：	B1	3A	443	XJMPAT	LDA	（PCL）－ P	
FAC7：	AA		454		TAX		LDAA PC POE JSE，
FACE：	80		445		DEY		（JAE）SIMULATE．
FACS：	B1	4A	440		LDA	（FCL），${ }^{\text {F }}$	
FACE：	60	38	447		ETX	PCE	
FACE：	65	3 A	44 B	NEWPCL	SIA	PCL	
FACF：	BU	P1	449		BCS	XJMF	
FADI：	45	28	450	aTNJMP	LDA	RTNH	
FAD3：	id		451		РН\＃		
FAL4：	A5	36	452		LDA	RTNL	
EADE：	48		453		PHA		
FADT：	2 V	BE ED	454	REGGDS	J5R	CRQUT	DISFLAY USER HES
FADA：	A9	45	455	Bgospl	LDA	\＃ficc	CONTENTS NITH
EADC：	d5	40	456		STA	AJL	LABELE
FADE：	A9	40	457		LDA	\＃ACC／256	
EAEI）：	45	41	454		ATA	可3迷	
FAE2：	A2	FB	459		LDX	\＃SFE	
FAE4：	A9	A0	460	RDSPI	LDA	\＃Sag	
EAE 6 ：	20	ED FD	461		JSR	cout	
PAE9：	BD	IE FA	462		LDA	RTEL－SEB，X	
FAEC：	20	$E D P D$	463		ISR	COUT	
FAEP：	Ay	日a	464		LDA	\＃585	
FAFl：	20	ED FD	465		JSR	cour	
FAF4：	B5	4A	466		LDA	$\triangle C C+5, X$	
PAPG：	20	DA FD	467		JSR	PABYTE	
FAF9：	Eb		408		1 NX		
FAFA：	30	EH	469		EMI	HDSP1	
FAEC：	60		474		RTS		
PAFD：	10		4.11	BRANCE	CLC		BHANCH TAKEN，
FAPE：	AU	01	472		LDY	\＄$\$ 01$	ADD LEN＋2 TO PC
PEOU：	B1	3A	473		LDA	（PCL）． 7	

FRO2：	20	3459	474		258	PCADDI	
FQus：	85	1 A	475		ST 4	PCL	
FEV7：	913		$47 \bar{\square}$		さYス		
FEue：	54		4 r		SEC		
FDU9：	Bu	42	478		GCS	PCINCE	
Frye：	20	39 PF	$4{ }^{19}$	NBENCH	35R	SNVE．	HORTAL RETUUEN AETER
FRUE：	3 d		484		SEC		XEQ USER OF
FBuE：	30	9 E	691		BCS	PCINC3	GO LPEATE EC
沮11．	E）		482	10753L	QOP		
FE12：	EA		483		MOP		ДеяMy PJLL Fan
	4 C	U3 Ea	407		3MP	3ERNCH	XEG AEEA
P616：	4 C	FD EA	435		गッP	ERANCH	
FRJy：	II		486		DFE	SCI	
PB $1 \mathrm{~A}_{2}$	L8		4 bi		DEB	SD8	
FB］B ：	D9		400		DPA	S09	
F81C：	Du		409		DFE	\＄5V	
P310\％	Du		4 ys		DEI	201	
FB］E：	AD	it Lo	491	PEEAL	LDA	Pific	TKTGGER P㐌DRLES
F日212	AU	170	492		LDY	\％ 54.	［172 EOUty
FE23：	EA		493		N0P		
F924：	54		494		NOP		
Ea23：	EL	bt Cu	492	PREAL 2	EDA	Paddele 8	COUNT A－REF SVERY
FR2日：	1 d	14	496		8PL．	Rossea	12 ZSEC
¢82我，	Cd		497		1 NY		
FE2， 5	DV	Fb	498		alve	Preaiz	
F525）	sb		459		DEY		
FBRE；	60		304	HTE22	5.5		
EELe ：	Ay	U4	501	24IT	LEA	8500	ELF STAIUS FOR DEEEG
29314，	65	40	542		S2A	37AIUS	SLOETAAKE
P931：	12	50 Cu	50.		LDA	LORES	
FE26；	AD	54	504		LEA	LEWSCF	IHIt VIUEO NOEE
PE］4．	ME	52 C0	505	SETTAT	LDA	TXTSET	SET FOR TEXT MODE
Fe36：	34	40	506		LDA	4504	FHLI SCRDEN KINEOS
FRJE：	Fu	UB	Sal		$a E$.	EETNINL	
PE44	AD	54 Eu	jud	SETSGR	LDA．	IXTCLA	5ET PGB GRaphice MOtme
EE431	$A E$	3s Co	504		LLE	M1XaET	LOWER A LINESI 96
PE45：	20	36 Es	314		JSR	SLRTCF	TEXI NINDOW
＋84き：	AY	14	511		4 BiA	\＄514	
F84日：	95	22	512	5ETRND	5 TA	NADEOP	SET FOR 40 OLOL WLNDOW
P8415：	A9	du	513		LEA，	9500	IUP It A REE，
EB4Et	6.5	20	514		¢TA	3 NDLET	进TTM AT LIME 24
EBSLT	Ay	26	515		LDA	\＃ 52 t	
P＇833：	65	21	916		$3 T A$	ANDWDTH	
Eejs：	As	1d	317		LDA	\％sid	
P65\％	05	23	518		$3 T A$	N＊DETM	V\％ 5 T0 kow 23
P日54：	Ab	17	ミ1y		LDA	\％527	
F353\％	65	23	520	TABV	3TA	CV	TEAES IC RCIF IH A REE
FESLI	4 C	22 FC	221		JMP	vesab	
Fepus	2 Lu	A 4 FB	322	MOLPM	ISP	ME1	GBE VAL DE GC mux
Pe63：	Au	11	323	MUL	LCY	－510	INLEX FOR 16 EITS
FE65J	A）	50	524	MULZ	LGA	ACL	ACX $\cdot \mathrm{ASX}$－XZND
P867\％	4 A		525		LSR	A	TC IC，XNa
P8601	94	NGC	325		BCC	Hus．	If No Cabry，
Pe6A：	14		127		CLC		NO PKBTIAL PROD．
P66\％	A 2	EE	52d		LDA	－SFE	，Pk．
88604	B5	54	524	M142	LDA	X 2 NLL $+2, \mathrm{X}$	AOE MELCNE（AUXY
E日6F	79	56	350		$30 C$	$A \cup \times L+2,8$	TO PAFITAL PROE
EETLT	45	54	311		STh	K2NDL +2 ， x	（ XTND ）．
6矿）	E．${ }^{\text {d }}$		312		INK		
Pavas	Du	ह\％	313		CNE	30L3	
F星767	42	U2	5.4	MUL 4	LD．	\％ 503	
£a7o	16		215	M0LS	वEE	2370	
7－ 79	50		816		DFE	\％ 550	
E9342	CA		331		二ER		
E日伯2	20	ER	530		日RL	MELS	
EP12\％	38		539		อร\％		
FGIE＝	EU	E5	548		Site	Nut 2	
FEAG；	bus		54.1		RI＇S		
FRE］：	20	A4 PB	542	D7 VEM	13	ME1	AgS UAL JF AC，kll
EEn2：	AU	1μ	543	Dav	LET 4	v510	SNDEX FGR 16.1515
EE8G：	10	54	54.4	01v2	ASI	ACL	
EEAC：	26	51	543		ROL	ACH：	
FB6A：	20	22	540		ROL	STVINL	8TNS／AUS

FBaC：	20	53	547		R0L	XTIADH	IQ 20.
FBde：	18		240		SEC		
EBSEF	哭号	37	549		LD\％	YTADE	
EB31t	E引	34	350		586	A 4×5	MCO EL XVYD．
EEaly	＋A，		551		TAX		
ECI4，	45	ปコ	332		LDİ．	XTNDH	
EDY0\％	55	35	551		gec	कuxH	
E日碞：	46	40	224		BCC	Div3	
	80	12	551		atx	XPNDL	
₹ByC	125	31	590		Sti	X201近	
E日yt：	5 F	S11	537		［NC	ふCL．	
E日大犋	$\exists \square$		3コロ	［1V3	AEY		
EGA1：	EIL	E3	55%		ふマE	DIV2	
EGal：	bu		3 Eu		，I5		
ESA 4 \％	A．	y 0	341	QDL	UDY	3 ¢nu	ABE VAL DF AC，AUX
	－4	2 F	362		STY	SICN	NITH SESULT SIGi
FENB？	N：	54	561		LDX	BAUXL	IN LSG OE ITGN．
EBAA：	20	AF PB	564		ISR	MD2	
EGAR：	A2	Su	565		LDX	\＃ACL	
f⿴囗十大⿳亠二口欠彡：	B2	41	366	MD2	LDA，	LOC1，X	X SPECIPIES AC DE MUX
F日EI：	12	Ut	567		BPL	MORTIS	
F日BI：	3d		368		SEC		
EEA A	48		365	MOI	TYN		
E日B5！	ES	U4	5711		SBC	LOCD， 8	בDMPL SPECIFIEL AEG
E日日 7	¢5	14.4	571		STA	LOCD， 8	IF NEG．
FE日 4 \％	44		372		TYA		
F日友：	F5	01	571		SBC	LOC1，x	
E日EC	95	41	574		STA	LOC 1，x	
BEGZ：	E6	2 F	575		INC	SIGN	
EBCU：	80		57 a	mants	RTS		
E日C1：	48		977	EASCALE	EHA		
EEC2\％	4 A		578		USE	A	EOR GIVEN LISE SO．
E日C34	27	03	579		AND	4563	$0 c=6$ LNE NO． $5=517$
EBC5：	14	04	580		ORA	7504	ARG＝USQABCEE，GENERATE
EBC 7 ：	a 5	2 B	3 cl		STA	EASH	SAこH＝0ん0́OU12D
EBC9：	6al		382		9LA		AND
EBCA：	29	1 D	303		AND	＋512	
E日CC：	40	$\omega 2$	534		GCC	ESCL．C2	
FBCS ：	69	7p1	585		SDC	＋ 87 F	
Eatu：	\＄5	2 D	इ66	SSCLC2	STA	日ASL	
	0 A		581		AらL	A	
FBD？	Uns		5 da		AsL	A	
F日b4：	U5	20	3世4		JRA	BASL	
FEL6：	85	28	590		BTA	9ASL	
FELE：	bd		591		RTS		
FSD 9 ：	C2	47	592	EELII	CNF	1587	
FEDE ：	D0	12	594		GNE	FTS2B	ND，FETHR
FEDD：	19	4 N	594		LDA	7540	DELAY－U1 SECENDS
FPDF：	20	AB FK\％	295		JSR	WALT	
FBE2：	411	Cu	566		LDY	\％560	
FBL4	Ay	MC	597	BELLZ	GDA	Fईuc	TOGGLE SPEAREA AI
E8E6！	20	38 FC	596		ISR	N入IT	I KHZ F口E +1 SEC＋
FBEY	$A D$	3 NCU	599		LDA	SPRF	
PBEC：	とす。		500		CEY		
EEED：	E4	F5	F01		第NE	8ELL2	
PEEE ：	OY		QUZ	FPS 218	RT5		
FEEU：	A 4	24	－03	STGADV	LOY	CH	CDRSEK H LDEEX TD Y－red
EBE2：	91	2a	304		STA	1旦ASL），Y	उTOF SDAR in LWE
EBP4；	Et	24	bus	ADVANCE	INC	C日	INEREMENT EDSEEK ENLEX
FEPG：	AJ	24	6u5		LDA	C⿴囗	（GOVE RIGHI）
FBFa：	CI	21	607		CAE	WNDWDTE	9EYOND ALNDOW WIETH？
PEEA	Bu	68	50． d		acs	$C R$	YES CE TO NEXT＋LNE
FBEC：	60		609	RT33	\％\％S		NU，RETEEN
FEFE：	E2	Nu	＋10	VEDGU5	QAP	\％る今	SONTROL こAA5？
FEFP ：	E0．	致F	511		GCS	SIOADV	TU，OUTPUT 1T．
FCul：	Á		612		TAY		INVERSE VIDEOT
PCO2：	IU	EC	立11		BPL	STCADV	TES，पםTPLT I＇．
FCu4：	C）	3I）	214		CMF	「580	CR？
ECJb：	Eu	5 A	615		3EQ	CR	YES
FCua：		da	016		CME	A\＄0A	LIME FEED？
比㛧：	Pd	5c）	617		BEQ	LF	IF SO，DO If．
FCUC：			618		CME	4 \＄988	BACK SPACEf（C2NTRL－日）
PCUE：			619		－ NE	國矿	NO，CHECK VDI 引ELL．

FCIUT	Er	24	620	95	DEC	CH
PC12t	30	86	a 21		BPL	BTg3
PC145	A5	21	622		LDA	WHDNDTH
Y゙161	85	24	621		314	CH
FKldy	C6	24	524		DEC	CH
5 Clat	A 5	22	Q 25	IT	LDA	WNDTQE
FCICt	C5	25	626		LME	CV
EC1E：	EU	UE	627		BGS	RTSA
ER2U4	＜6	25	62.8		DEE	CV
FC22	A 5	25	629	VTAE	LDA	CV
EC24f	2 J	C1 PG	634	V1AB2	J3R	BASCALC
ERごった	65	10	631		ADC	NNULET
FC2y	85	28	632		517	Bast
FC2B ：	60		631	FTS 4	FTS	
F220：	49	Cu	634	ESCI	ECE	$75 C L$
EC2E：	F1	26	635		BEQ	EOME
FC3D：	69	F0	435		ALE	\＃5FC
ECS2：	90	Eu	637		ECC	ALVANCE
PC54：	Fu	DA	－136		日EO	ES
PC56：	69	FI	039		$\triangle D C$	\％SFD
ECJd：	95	स2	040		BCC	LF
PC3A：	Fif	EE	641		BEC	UP
FCJO；	69	PD	［42		ALC	35PD
fCatr：	90	5 C	647		ECC	SLREOL
FC40：	D］	E9	644		BWE	RTS4
FC421	A 4	24	64？	GLEEDP	LDY	CH
FC44：	A 1	25	445		LDA	CV
FC4日：	4 B		047	CLEOP	PHA	
FC47：	40	74 FS	648		SミR	VW大边速
PCGA：	40	YE EC	549		158．	ELEGTK
FC40：	A 1	UT	650		LDX	1Su4
きCAE ：	60		bil		DLA	
FC50：	a9	411	6， 32		GDC	\＄50u
FCS2：	ES	$2=$	4.53		50\％	N3DETM
跎发4：	90	きu	प 24		ACC	ETEAPI
FC55：	Bu	CA	055		日CZ	VTAE
5C5a＝	A 1	12	650	HOME	LDAA	NNDIEF
PC3A：	d5	25	057		DTA	\％V
FESO：	Al	al	453		LDY	3500
FCSE：	94	24	45%		STY	CL
FCbu：	P＇0	E 6	560		BEC	CLEOP！
F\％62；	A9	40	56.1	C．A	LDA	7500
FLE 64	35	24	662		BTA	CH
FCG6：	E6	25	6.61	LF	TNE	CV
FC60：	15	25	464		LDA	をV
ECES：	C5	23	065		GME	bNDBTM
ECGC：	4 c	园	690		BCC	YTAEZ
FC6E：	C6	25	607		DEC	EV
F －70：	d\％	22	664	SCADLL．	LEA	GNOTOP
ELT2：	46		6.93		EHA	
F673：	2.15	24 FC	$\square 7.1$		J5F	VIABZ：
FC\％o：	A5	28	a．71	SCBEL	LDA．	9ASL
FCTV ：	45	2 A	672		3／2N	GAS 2L．
FC14：	AS	29	－73		LEA	BASH
EL7C；	的	28	674		STA	B432H
PCJE：	N4	21	675		LDY	WNDWETE
FCEO：	dd		476		DEX	
FCB1：	60		677		PGA	
PCb2：	69	11	b） 78		$A D E$	\＄591
PCH4：	45	23	579		CMP	dNDESM
PCJ6：	B0	OD	964		965	SCBLI
FEめd；	48		681		PHA	
PCdy：	己U	24 F＇0	582		JSE	VTAEA
fiact	BI	24	583	5CRL2		（BASL），Y
FCuET	91	2 H	684		3 SA	（日AS21，
fcyu：	t\％		≤ 85		DEY	
FC91：	10	29	486		BPL	SCRL2
PC93：	30	E1	487		宜机	SCRLL
ECys，	A 4.	4 L	0tba	SCH2．3	LDI	4500
EC97：	24	3E FC	toty		JSE	CLEOLZ
PC9A：	Bu．	गb	b 90		3CS	VTAE
FC9E：	A4	2_{4}^{4}	091	CLFBOL	LDY	CH
PCyE：	54	Ad	0.92	CLEOLE	LEA	－\＄AU

QECSEMENT CUFSEF H TNEEX IE EOS，OK．ELGE HOVE UP SET CH TD WKDWDTH－1

1A2GHTMOST SCAEEN POS\＆ GUESEA V INDEX

TE TOP LINE THES RETURY
DECR CURSER Y－INDEX
GETT CURSER V－INDEX
GENERATE 日ASE ADDR
ADD NINDOW LEFT INDEX
TG BA5L
ESC？
比 コロ，CD HCEdE AMD CLEAS
ESL－A DF B CHECK
A，AUVANCE
日．BACKSPACE
ESE－S OR D CHESK
C． $50 \mathrm{~N} / 4$
D．GO पD
ESC－E AR \vec{P} CHECK
E．CLEAR TE EVE OR LAHE NOT R，BETURN
GJRSDA If TO Y INDEX
CURSCR V ED A－REG1STEF
SAVE CURRENV LINE CN STK
CALC EASE ADIFEDS
ZLEAB TO EUt，SET GAFRV
CLEAG ZRLM B INDEX＝U EDR PES：
IMCAESENT CURREST LI法E
｜CABRY IS GET।
DONE TO BOTFCM QE ，INDOW？
NO，REEE CLEAFING LIVES
YZS，TAB TO CURRENTH LIHE

SND HーSNOLCES
THEN LLEBE゙ TQ LNE OF YMUE
CURECR TC EEPT GE IMDEX
18ET CUREDR F＊W।
INCR CURSOR VIQC／FM＋GIHEI
ORE BCREEN？
ND．SET EASE ADDR
DECR CUKSDR VIBACK TQ פOTIUI
START AT TGP DF SETL SRDW
GENERATE उ太SE \＆DDAESZ
CDPY BASL．N
70 BNS2．，目

INII Y TD RIG日TMOST TADEX DE SCZOLDING KINDOW

INCR GINE NUMEEF
DONE？
\＆ES，FINISH
FORH BASL，H IBASE ADDR I MOVE A CZE［GE CN LINE

GEKT CHAR CF LESE
NEXT LIVE
CLEAR BOTHOM LINE
CET BASE ADOR FOR 3OFWCM LIXE
CARPY IS SET
CDBSGil I INDEX

FCAU：	91	2d	893	CLEQL2	STA	（BASL），\％	STGRE 日LANKE ERON＇日ERE＇
PCA2：	Cd		4．44		IUY		TO END OE LINSS（WNDINOTH）
FCA3：	C4	21	695		CPY	NNDNDTH	
ECAS：	Yo	E9	396		BCC	CLEQLI	
ECA 7	60		697		RTS		
fCAO：	－ 9		698	NAIT	SEC		
FCA9：	40		6yy	NAITZ	PHA		
ECAAP	E9	05	740	NAIT3	SACC	\％ 501	
FCAC：	Bu	FC	701		BNE	WAITJ	1．0204 USEC
ECAE I	－ 0		142		PLA		$(11+2712 * A+517 * A * A)$
ECAE：	E9	01	743		SBC	\％SUI	
ECE1：	DJ．	E6	74.4		日NE	VAIT2	
ECR ${ }^{\text {a }}$	口o		Tus		RCS		
ECP4：	Ef ${ }^{\text {a }}$	42	706	NxTA4	INC	A 41	INCB 2－EYTE 34
PCE $6:$	Du	12	2107		3NE	3xIAI	ล＊D A 1
RCas：	Ef	41	308		1，inc	A419	
FC3A：	As	36	709	NKTA 1	LDA	Ail	INCS こーBYTE＋1．
FCBC	CS	32	710		CHF	A 21	
FCEE＝	A 5	315	711		LDA	A1H．	ARD COMRALE 70 N2
ECCu：	E5	2F	712		S碞	A2：${ }^{\text {a }}$	
ECC2：	E6	$3 C$	11］		INC	Ald	CCARRY SET IE－$=1$
ECCA：	［4	＋2	714		SNE	ATS43	
FCC5：	E6	35	715		L20	A 1 H	
FCCo：	40		716	ETS43	吅＇S		
FCC9：	Au	de	127	aEADA	ELY	\％ 548	ARITE 3＊2ad＇LUNG 1＇
PCCB ：	2 L	DE FC	118		73F	3EFDLY	IALF CYCLES
PCCE：	Did	E3	$11 \geqslant$		SNE	HEADR	1650 USEC EACH
ECDU：	by	PE	720		NaC		
PCO1：	Su	E5	721		ges	GEADF	THEN A S SMOPR 0 ＇
PCO4：	A 2	21	722.		LDY	\＃521	（ 4 VN USEL）
FCO61	20	DB ECT	223	VRBIT	JSE	ZEADLY	NEITE TWO HALE CYCLES
FCOG：	50		724		LnY		
FCDA：	C6		725		1＊4\％		3R 500 HSEL（ $\left.0^{\circ}\right)^{\prime}$ ）
FCCB：	40		726	zerrdiy	－ $\mathrm{ESY}^{\text {y }}$		
FCDC：	Du	F口	727		3NE	TERDLY	
FCDE：	40	45	726		8cc	WEIAPE	Y IS coinit for
ECEOt	A0	12	129		LDY	4.532	TIMING LOQR
FCE 21	d8		130	ONEDLY	DEY		
ECE 3：	Du	ED	731		BNE	ONEDLy	
zees：	AC°	20 CL	732	WHTAPE	LDY	TAPEOUT	
हCEd：	A 0	$2 C$	731		ID Y	\＃52C	
FCEA：	EA		734		DEX		
FCEA：	64		735		RTS		
PCEC：	A2	d8	136	RDB YTE	LDX	T\＄05	8 BITS TO READ
RCEE：	$4{ }^{4}$		731	RDB4T2	9 ga		READ TWO TRANSIIIONS
FCEE：	20	EA FC	718		3SR	RD2日IT	（FITM SECE）
FCE2：	6 6		719		PLA．		
FCF3：	2A		740		ROL	A	NEXI ${ }^{\text {PIT }}$
FCF 4 ：	AM	3A	741		LDY	－534	COUNT FOR SAIMPLES
FCF6：	CA		762		DEX		
FCE7：	Qu	25	143		Gave	RUBY\％	
FCEM	60		144		9TS		
ECEA：	20	$3 D F C$	745	RL2BIT	ISP	BDEIT	
PCFD；	08		746	RDBIT	DEY		DECE y antil
ECEE；	AE，	6u EU	747		LDA	TAPEIN	TAEL TRANSITICN
EQul：	45	$2 F$	748		EOR	LASTIN	
EDO3：	10	¢	149		apL	SLE IT	
E003s	45	25	250		EOR	LASTIN	
EOU）	85	2 P	751		STA	LAE＇TIM	
F009］	Cu．	du	732		CEY	\＄580	SET CAREY ON Y－PEG．
EDUS：	60		1.53		BTS		
FBUC：	A 4	24	754.	RDEEY	LDY	Ch：	
FCOE：	日 1	28	155		LPA	（BASL）${ }^{\text {y }}$	SET SCREEN TG ELASH
FD102	48		850		PHA		
EC1I：	24	3 F	757		AND	F5JF	
FDIa：	49	IV	750		dRA	7540	
Folsi	91	20	759		STA	（BASL）； 4	
FD1 ${ }^{\text {c }}$	68		760		PLA		
ED10：	at	3 al	＜01		JMF	（856L）	GO IC USEA KEY－IN
Pu16：	E．	AE	$\checkmark 62$	KEYIN	INC	BLEDL	
POID：	EU	${ }^{2}$	76		3NE	KEYIS 2	IMC5 RND SUMEEA
FOIF 1	EO	＋F	164		IHE	KNDH	
Fi2ls	20	44 ty	269	REYIN？	B17	$\mathrm{K}_{6} \mathrm{BD}$	KEL L DOWbri

aERLACE ELASMING＝CFEEN
GET KEYくDUE
CLR REY STRC日E
GET REYCODE
はa
KRAD KEY

CHECK EQR EDII REYS
SEI，CTFL－K．

MARGIAF
YES，SOLNL LELL．

gaCRSLASH AEPER CANCELLED LTV

QUTPCT BLADR
QURPLT BYTE IN HEX

FLCLI： FDC5：	$\begin{aligned} & 90 \\ & 64 \end{aligned}$	26	418 839	RTS 4 C	BCC RTS	MODACHK	CHECK IF TIME TO， PRINT ADER
FDC6：	4 A		340	XAMPM	LSF	A	DETERMINE IF MON
FDC7：	94	EA	841		日CC	XAM	WODE IS XAM
EEC9：	4.		642		LSR	A	$A D D, O R$ SUB
FDCA ：	4 A		84\％		LSR	A	
FDC8：	T． 5	38	H4A		LDA	A2L	
FDCD：	94	02	045		BEC	ADD	
EDCE ：	44	PF	－40		EOR	\＃SP？	SUBI EWRM こ＇S LCMPLEMENT
FDDI：	65	32	647	$A D D$	$A D C$	A1L	
FCD 3 ：	4 d		84．15		EHA		
PDD 4 ：	Ay	B5	d49		LDA	－5BD	
EDD6：	2 L	ED F＇D	654		JSR	COLT	PRINT＇＊＇，THEN RESULT
PDD4：	טJ		431		PLA		
FDES：	4 e		352	ERBYTE	PHA		HRINT BYTE AS 2 HEX
FDDE ：	4 A		d53		LSR	A	EIGZTS，DESTRCYS $\begin{aligned} & \text {－} \\ & \text { HEG }\end{aligned}$
FDLC：	4 4		454		LS月	A	
FDDD：	48		435		L．5R	A	
FEDE：	48		456		LSA	A	
FDDE ：	2 CH	$E \leq E D$	457		JSR	PRHEXS	
FDE2：	68		－59		PLA		
FDE	29	UE＇	059	PKHEX	ADC	\＃STV	FBIAT BEX DIG IN A－HEG
FLEE5：	19	きu	46 W	PRHEXZ	CRA	2SE4	2.53 .5
FLET：	5y	59	661		CMP	93.92	
PDEが	45	U2	862		BCC	COCT	
FiEA ：	by	U6	661		ADC	\＄506	
FDED：	bit	20 リー	564	cout	IME	（CSWL）	VECTGA TO GSIR UTJPRUT REUTIVS
FDFO：	ey	AL	465	COUTL	CMP	\＃5宕0	
FEF2：	4 y	d2	日年0		GCC	50UT2	DONTT DUTPLT STRL＇S IDVERSE
FDEA ：	25	37	067		A．4D	INVELG	MASK あITH INVEFSE ELAG
SDF 6 ：	d4	35	463	こ0以TH	STY	＊SAV1	SAV Y－REG
PDFb ：	4 4		369		PHA		SAV \rightarrow－REG
FDF40	24	ED FE	674		USK	VIDOUI	ULTFUT A－REL AS AECET
¢DFC：	6is		471		PLA		RESICRE A－REG
F＇LFL：	$\wedge 4$	15	6×2		LDY	YSAV1	ANI X－REG
FDFF：	6u		673		RTE		THEE SETUAN
FEUU：	C6	14	674	BL］	ARC	Ssav	
PEu2\％	Eu	＇E	875		BEG	XANH	
PEU4：	CA		576	BLANK	DEX		
FE：ら，	Dil	10	877		BNE	SETMDE	AFTER BLANK
PEU7：	C9	SA	878		CHE	15BA	CATA STOHE HOUEF
FEGY：	D． 2	EB	879		GNE	XAMPM	NO，XAM，ADD JB SOE
FEU9：	85	31	Gobl	3 TOR	BTA	TODE	KERP IN STCRE MCRE
FEDL：	A 3	3E	861		LDB	ARL	
PEOF：	91	46	am2		3TN		STERE AS LEN 日YTS AS（R3）
EEII：	E． 6	40	回叮		INC	A3L	
FE13：	Lo	U2	DAF		BNE	ATSS	INCE AI，BETURN
FE15：	E6	41	805		InC	A3H	
FE175	615		986	RTS 2	3 Ta		
FE1日：	A 4	34	48）	SESMOLE	LDY	YSAV	SAVE CONVERTEL＇${ }^{\prime}$＇，＇＋＇，
FE1A：	B9	？ F ／ 1	B40		LDA	IN－1，Y	＇－＇，＇，AS MODE．
FE．1D：	8ミ	51	889	SETMD：	STA	MOLE	
FE1F：	OU		490		「15		
FE2U：	A2	41	HyI	LT	LDX	＋5U5	
FE．22：	B5	2E	592	LT2	LDA	A2L， X	CQEY A2（2 BYTES）TO
FE24：	95	42	893		ETA	A $4 \mathrm{~L}, \mathrm{X}$	A4 AND A5
FE26：	95	44	894		SIA	A． $51, \mathrm{X}$	
EEZa．	C．		1995		DEX		
FE29：	10	F7	dY0		BPL	152	
FE28：	to		897		FTS		
FE2C：	81	It	898	MOVE	LDA	$(A \perp A) \cdot Y$	
FE2E：	91	42	899		STA	（A4C），	（A 4）
EE $30:$	20	34 PC	$30 \square$		JSB	NXTAL	
ER33 7	90	F7	301		日UC	MOVE	
FE35t	60		442		HTS		
FE30：	B1	3 c	903	VEY	EDA		VEREPY（AI TO A2）KITH
PE35：	D1	42	904		CMB	（A4L）， Y	（A4）
EE3A	FU	LC	905		BES	VFYOR	
EEJC：	20	42 CD	900		JSA	PRA1	
PE， 19	日1	IC	901		IDA	（ALL），y	
FE41：	24	DA PL	308		J5F	PREYTE	
PE44t	$\pi 9$	A0	109		LDA	\＄5AU	
PE4G：	2.1	Q FD	914		JSt	cover	

E．549	39	Ab		412		SDA	35，9d	
FE4E＝	2 L	E12	FD	412		JВ月	CLLT	
PE4E ：	合	52		± 13		LDA	（A4E），	
PESu：	20	DA	EL	914		15 B	Fray＇te	
EES3：	， $\mathrm{i}^{\text {y }}$	A4		$y 13$		LDA	\％\＄A9	
EES5：	24	EL	FL	916		JSB	COUT	
FE3\％：	20	34	FC	917	VE YOK	JSE	NX：A4	
EES星：	Yu	D．		41H		$B C D$	VEY	
FESD：	by			919		ATS		
FESE：	2 u	73	\％E	$\$ 20$	ち1ST	Jコ下	415	MOVE＊（2 IVMES）T0
EEG1：	As	14		921		LDA．	4514	PE IE SEEC ${ }^{\text {S }}$ S AE
PE力3：	48			422	L． 4.929°	¢日成		DISSENELE 2 U IVSİS
PE64：	20	06	Ft	$\geqslant 23$		，15 A	IH3TESP	
EEar：	20	53	F3	924		JSE	FENES	ALJULT + E EACH ICSTN
FEGA：	d2	1 1		72.5		5x2	FEL	
EEGC？	6.4	18		12 a		$3 T Y$	FCH	
FE玄く，	46			シ27		PLA		
FEb5\％	18			225		3EC		
EETU：	ES	U1		229		3日C	\％Su1	SEXE DE IL IGATAE
FET2：	Du	QE		310		BNE	LIST2	
FE 74，	4 L			931		QTE		
FE\％${ }^{\text {PE }}$	di			412	$\triangle \triangle P C$	IXA		
FE． 76 ：	50	07		923		GE，	A］PGRTS	G2DY FKGt AT IN EC
FE入a：	es	36		234	A1PCLE	LDi	A14，	
己ETA：	45	3 A		415		SIA	PCE，\times	
PETG2	CR			\＄1 16		ロジ		
อยプン	iv	89		$43 \bar{y}$		8，	AIPCLF	
2以フE？	60			$2 \geqslant 8$	AIPCHT	Rig 5		
PEd日：	AD	5		535	5ET1NV	LDY	433 F	SET EOR INVERSE VID
FEは2：	150	42		440		BNE	SETLELG	VIA ESUT1．
FES42	34	PE		941	SETHORM	UDI	\＃SFP	SET FCR MOSMAL VID
F5boz	54	32		943	SETJELG	STy	INVELE	
FE日6：	¢0			± 43		RTS		
PE．${ }^{\text {P9 }}$ ：	A9	4u		444	溉TKBD	LDA	FSuU	SIMULATE PCFT \＃
FEAB－	35	36		345	INPOR＇	STA	A 21.	GEECIFIED（KEYIN EQGTINE）
FE\＆DT	A2	35		946	INPFT	LDX	FKSNL	
EEHEI	AU	18		447		LDY	FKEYIN	
ERG14	Du	Ad		$\pm 4 \mathrm{t}$		GNE	KOpRT	
E2Y3：	A9	Uu		349	SETVIO	LDA	－500	SLEULATE POAT 70 DUTPUT
Eもyう7	85	35		\＄50	OUTEOHI	3 TA	A2L	GPECEPIED（COUT1 HOQTENE）
FE97\％	A2	36		Y 51	UUTFRT	LEX	\＃CSWL	
PE997	A 0	EU		932		LDY	$3 \mathrm{COUT1}$	
PE9B7	45	J		553	TOPRT	LDA	A 21	SEI HAH LN／OUT VECLQAS
PE90：	29	JF		954		A2D	\＃SuF	
FE9F－	FU	U6		955		BEG	LOFHTI	
PEA1；	$\checkmark 9$	C0		450		GRA	\＃1OALR／256	
EEA 37	Au	40		857		LDY	150u	
EEA5I	EL	47		958		BEO	IOPRT 2	
EEATE	A 3	PD		359	10ERT1	LDA	\＃CDUT 1／256	
EEA9：	$\exists 4$	प11		96 H	10EHT2	STY	LCEW， x	
PEAB \％	22	41		901		STK	LCOCl ，x	
PEAL：	bu			422		KTS		
PEAE：	EA			9 g 1		NOP		
PEAE：	EA			964		NOP		
EEGC：	45	40	EO．	255	KaA510	JME	日ASTC	T0 BAइIC WITH उCFit＇CH
PEE］：	4 C	43	EU	406	BASCONT	JYE	EASIC2	CONIINLE 3 AS：C
EEA6；	20	73	PE	961	GO	JラR	A 12 C	ADR TO PC IP GBEC D
ELJ4：	20	3 E	FF	90 d		35R	FESTORE	FESTORE ME＇AN FEGS
FESC：	66	3 A	Od	969		$3 M P$	（PCL）	GO TO DaEB SUAR
EEAE：	4 C	D \dagger	EA	974	PEG2	JME	REGDS F	TO EEC UISPLAT
EECZ：	Co	34		971	TRACE	DEC	YSAV	
PEC4：	20	35	EE	972	STEPA	158	A $1 P C$	ADF TO FC IF SPEC＇D
FEC7：	AC	42	PA	973		Jup	STEP	TAKE CNE STEF
PECA：	4 C	Fb	01	974	USt	JMP	USRADR	TO USA SUEK AT UGAADR
EECC：	A 5	40		y75	WRITE	LLA	－$\$ 40$	
FECE ：	21.	Cy	FC	916		JSR	HEADA	NRITE 14 －SEC HEADEK
PED2：	Au	27		377		LDY	5\％27	
FED4：	A 2	40		278	NR1	LDX	554N	
FEDO：	AI	3 C		479		EJA	（ALL，X）	
FEU8：	48			9au		EHA		
FEDY：	A1			961		LDA	$(A L L, X)$	

FP7a＝	A0 1\％	1055	LDY	－\＄17	X－REGOH IF N2 HEA IHPUT
FE7A	H6	1456 CLESHCH	DEY		
EP7日	11］Et	1125	3M1	NG6	NO／FCUND，GU IO 90\％
EP化：	D9．CC FP	1056	CMP	Cifitibly y	FIND GRND CHAF IN TEL
EFout	Lu Eb	1059	ENE	CERSFCH	
EP627	20 JE PE	IU60	J56	TGEDB	FOUNE．CSLL こごGEESPGNDI訳
FP65\％	A 4.34	1007	LDY	TSAV	aUBR2USINE
ER014	$4 C \quad 73$ EF	1062	JイP	NXEITV	
PE6A：	A2 u3	IUEI DIG	LLX	4542	
EFJC：	UA	1464	ASL．	＋1	
EEUJ：	UA	Lu65	ASL	N	GOT HEX DIC，
PEdE：	UA	2ubo	A3L．	A	S日IET INTE 52
TEOF：	UA	140\％	Asis．	A	
FEYU：	UA	1066 NXTE IT	ASL	A	
FF31：	Saj Je	1059	ROL		
FES3：	E\％ $3 \overrightarrow{\text { V }}$	1078	ROL	㜢2月	
Fers：	CA	1471	DEX		LEAYE $X=$ SFE IF IfG
FFYo：	1450	1472	3 PL．	3XTEIT	
FEyE：	A5 11	1471 NXTEAE	L．DA	KCEE	
FF9\％：	D） 0	1474	3NE	ग17TBS2	IF MOLE IS 3ESO
EFSCI	－ 35	2013	LDA	A $2 \mathrm{H}, 8$	\％HE\％，COFV i2 2 U
F65Ef	45 12	1075	STA	A $1 \mathrm{H}, \mathrm{X}$	AI AND AI
EPAU2	9545	1071	STA	A3ti，\times	
FEA 27	Ed	$1879 \mathrm{NXTES2}$	INX		
FFヶう」	PM F $\overrightarrow{3}$	7079	3 EC	NXTBN5	
EEAS：	DH 46	1080	31，	\％xtcha	
FFA75	AL uर	J NJI GETARM	LD 8	7 940	\＃LEAR A2
EFA 4 L		1462	378	A 2 L	
EFTH 4	6日 75	1083	S\％X	A 26	
FEADz		10E4 NXTCHR	LDA	18，	GE：CFER
ごR日い	L8	1ヵbs	INY		
PREL：	49 9u	100to	EQu	7500	
EPBS：	29 6A	14日？	3 C	＋50．4	
EFS5：	90 －1	I wod	BCC	DIG	IF bEX 2：S，THES
EFB7\％	6.5 av	Ivey	＋DC	35日爯	
マFB2\％	C3 FA	2uラ4	GAE	＋5EA	
FFAB ：	日u 5 L	1441	8 BCS	014	
PEBE：	04	$1 山 \geqslant 2$	R25		
EEHE；	4\％PE	1473 TGSDE	LDA	$\pi 60 / 356$	filsa 41 CR－DRESA
FECU：	4 ta	$1 \leq-24$	PHz		S日Ef TLB ZM 3IK
FFEL：	39 EZ	1455	LDA	ज18\％\％1，	205日 L0\％ $2 R E E F$
PrC4：	46	1140	E月，		SlQer ALE Sh ST？
EFCS：	A5 31	1uy	LEA	MODE	
FFC／2	Ag wid	1USİ 2SG60．	EDY	\＄549	CLA \％UDE，OLL MODE
¢FCy\％	64 31	1499	3 T	MODE	IL 1 －REG
PFCE	60	1100	RTS		［JJ SU SURP VIs HTS
PRCC	EC	ILU CHRTBL	1FE	536	E．＂CTRL－C＂）
EPCD：	E2	2502	DF9	\＄82	
PPCE：	EE	1143	DFG	58 E	（（＂CTEL－E＂）
PRCF：	ED	1104	EF5	SEO	E（ ${ }^{\text {S }} \mathrm{T}^{\prime \prime}$ ）
FFDU：	EF	1103	EFE	\＄EF	
FFGI：	C4	110\％	LFE	\＄CA	E1＂CighL－K＂）
ERO2：	EL	1107	DFE	SEC	E（＂ST）
FPC＝	4．	1106	DFE	\＄n9	F（＂CTRL－P＂）
FPL4：	BE	1149	DFG	SEB	F（＂CTRL－8＂）
EELS：	AO	1115	DFE	386	E $\square^{\prime \prime}$－＂
FFDE：	A 4	1111	DEB	SA4	$F($＂+ ＂$)$
FFD7：	H6	1112	DEF	546	F（＂唐＂）1P＝EX－an $530+9831$
EFDo：	55	1114	DEE	\＄95	F（ $\because<C^{\prime \prime}$ ）
FPIU：	47	21.14	DFG	507	F（＂Ni＊）
FEDA：	以	1115	DEE	502	F（＂2）
EEDE：	45	1116	DFP	S05	E（ HL^{L} ）
EFDC：	FU	1217	DFB	¢V1，	E （＂C\％＂）
FFDD；	40	111d	DE日	5 JU	E（＂G゙）
REDE；	EH	IIIg	DEB	5EG	$F\left({ }^{\text {F }}\right.$（ ${ }^{\prime \prime}$ ）
PFDP；	43	1124	DEE	\＄92	\vec{P}（＂：${ }^{\prime \prime}$ ）
FEEU；	42	1121	DFE	詔 7	ह（＂）．＂）
FEEL1	ए0	1122	DEG	\＄C6	P（＂C大＂）
FFE2．	99	2121	DEE	$\$ 99$	P（ELANK）
FFE 27	32	1124 3 DRTEL	LPE	\＃BnSCONT－1	
F9E4：	K4	1125	DFE	＋USR－1	
FEES：	BE	1726	DEA	AFEGR－1	

en	EFED :	C)	1127	DFP	-TRACE-1	
	PPE	35	1120	DFE	¢VFY-1	
	FPE6:	$\mathrm{OC}^{\text {c }}$	17\%	-FP	\# 1 NPPT-1	
	FPEY:	63	If 50	CFB	\#STEPL-1	
	FPEA:	94	1531	UFE	+ OUPFRT-1	
	FFEE:	AE	1132	DES	F SBASIC-1	
	HEEC:	12	1113	DEB	\#ЗETMODE-1	
-	FEED:	17	1134	DEG	FSETMCDE-1	
	EPEE:	23	1135	DPE	* ${ }_{\text {WiOVE-1 }}$	
	EFEF:	19	1136	DFE	SLT-1	
	FPFU:	09	1137	APG	ESETNORM-1	
	FPFI:	ip	1130	OFB	¢SETINV-1	
	FEF2:	26	IIS	DPE	FL15T-1	
	FEPS:	CC	1140	DEB	\#WHITE-1	
Ine	PEEA:	B5	1141	LEB	3G0-1	
-	EFFS:	5 C	1142	OFB	+ AEAD-1	
	EFFb:	17	1163	EFB	- SETMOEE-1	
	FEET:	11	1144	DFE	FSETMOCE-1	
Ex	EEFa:	E5	1145	DES	\#CRMON-1	
	FEF?	N3	1146	DFE	: ELANK-1 $^{\text {a }}$	
	FEFA:	P'	9147	DFE	, , , M M	SHI VECROR
	FRFS:	0.1	144	C54	fNM1/25t	
	FEFC:	54	1148	DFB	CHESET	BESEV VECTCTR
	FEFE:	PE	1150	DFB	FREEE'S/236	
in	FFFE:	36	1151	DFE	7176	IRQ VaCIOR
\cdots	FFFP:	FA	1152	CES	\#1RO/256	
			1153 Xgren	ECU	SIC	

0000 LDCO
0022 WNDTOP
0026 GBASL
OO2A BAS2L
002 D V2
DO2E FORMAT
0030 COLDR
0034 YSAV
0039 KSWL．
$003 C$ A1L
0040 ABL
0044 ASL
0047 YREG
004 F RNDH
OSF2 SOFTEV
O3FE NMI
COOO IUADR
C03O SPKR
C053 MIXSET
CO57 HIRES
C05B CLRAN1
COSF CLRANB
CFFF CLRROM
FBOC RTMASK
F日26 VLINEZ
FB36 CLRTOP
F日56 GBCALC
FG7F RTMSKZ
F日A5 ERR
FAC9 MNNDX3
FBF5 NXTCDL
F926 PRADR3
F940 PRNTYX
F94A PRBLZ
F956 PCADJIG
F9AG FMT2
FAOO MNEMR
FAb2 RESET
FAAS NDFIX
FABA SLOOP
FAE4 RDSP 1
FB1 1 XLTBL
FB2E RTS2D
FBAB SETWND
FBGF SETPWRC
FB97 ESCOLD
FBDO BASCLC2
FBFO STIRADV
FC10 BS
FC2B RTS4
FCSE HOME

FC76 SCRL1
FC9E CLEOLZ
FCAA WAITB
FCC9 HEADR
FCES WRTAPE
FCFD RDEIT
FDEF ESC
FDGE CANCEL
0001 LOC1
0023 WNDBTM
0027 G日ASH
002B BAS2H
OOED RMMNEM
$002 F$ LASTIN
0031 MODE
0035 YSAVI
0039 KSWH
0030 A 1 H
0041 ABH
0045 ASH
004 O STATUS
0095 PICK
Q3F 4 PWREDUP
OBFE IRGLOC
COOO KBD
COSO TXTCLR
COS4 LOWSCR
COSE SETANO
COSC SETANE
COBO TAPEIM
EOOO BASIC
FGOE RLDT 1
FB2日 VLINE
FB3B CLRSC2
F8G4 SETCDL
F882 INSDS 1
FBAD GETFMT
FGDO INSTDSP
FGF9 PRMN2
F92A PRADRA
F941 PRNTAX
F94C PRBL 3
F95C PCADJ4
F9B4 CHAR1
FA40 IRG
FAGF INITAN
FAAG PWRUP
FAC7 NXTBYT
FAFD PWRCDN
FB19 RTBL
FBEF INIT

FB5B TABV
FB7B VIDWAIT
FB9B ESCNDW
FBD9 BELLI
FBF4 ADVANCE
FC1A UP
FCZC ESC1
FCGD CR
FCBC SCRL？
FCAO CLEOLZ
FCB4 NXTA4
FCD6 WRBIT
FCEC RDEYTE
FDOC RDKEY
FD35 RDCHAR
FD67 GETLNZ
0020 WNDLFT
0024 CH
002 E GASL 002 C H2 OD2E MASK
$002 F$ LENGTH
0032 INVFLG
0036 CSWL
003A PCL
DOJE A2L
0042 AAL
0045 ACC
0049 SPNT
0200 IN
$03 F 5$ AMPERV
0400 LINE1
COIO KBDSTRB
COS1 TXTSET
COS5 HISCR
CO59 CLRANO
CO5D CLRAN2
CO64 PADDLO
E003 BASIC2
FB19 HLINE
FB3I RTSI
FB3C CLRSC3
FB71 SCRN
FBEG INSDS2
FBBE MNNDX1
FBD4 RRNTDP
F910 PRADRI
F930 PRADR5
F944 PRNTX
F953 PCADJ
F961 RTS2

FGBA CHARE
FA4C BREAK
FAEI NEWMON
FAAG SETPG3
FAD7 REGDSP
FBO2 DISKID
FBIE PREAD
FB3G SETTXT
FBEO APPLEII
FBBE KBDWAIT
FBAS ESCNEW
FBE4 BELL2
FBFC RTSI
FC22 UTAB
FC42 CLREDP
FCb L LF
FC95 SCRL3
FCAB WAIT
FCBA NXTAI
FCDB ZERDLY
FCEE RDBYT？
FD1B KEYIN
FD3D NOTCR
FDSA GETLN
0021 WNDWDTH
0025 CV
0029 BASH
OO2C LMNEM
OO2E CHKSUM
OO2F SIGN
0033 PROMPT
0037 CSWH
003 BPCH
OO3F AㄹH
0043 A4H
0046 XREG
$004 E$ RNDL
GFFO BRKV
OJFB USRADR
O7FE MSLOT
COZO TAPEOUT
CO52 MIXCLR
cOS6 LURES
CO5A SETAN1
COSE SETANJ
COTO PTRIG FBOO PLOT
FBIC HLINE1
F832 CLRSCR
FB47 GBASCALC
FG79 SCRNE
Fa9B IEVEN
FBC2 MNNDXZ
FEDE PRNTBL

F914 PRADR2 F93E RELADF
F94E PRBLNK
F954 PCADJこ
F962 FMT1
FGCO MNEML
FA59 DLDBRK．
FA9B FIXSEV
FAAB SETPLP
FADA RGDSP1
FB09 TITLE
FB25 PREADE
FB40 SETGR
FB65 STITLE
FB94 NOWAIT
FBC1 BASCALC
FBEF RTS2B
FBFD VIDOUT
FC24 UTABZ
FC4S CLEDP 1
FC70 SCROCL
FCGC CLREDL
FCAI WAIT2
FCCE RTS4B
FCE2 ONEDLY
FGFA RD2BIT
FD21 KEYIN2
FDSF NQTCRI
FD71 BCKSPC
FD75 NXTCHAR
FD92 PRA1
FDE 3 XAM
FDD1 ADD
FDED COUT
FEO4 BLANM
FEID SETMDZ
FE36 VFY
FE75 A1PC
FE84 SETNORM
FEED INPRT
FEGB IOPRT
FEB3 BASCDNT
FEC4 STEPZ
FEED WREYTE
FFOA RDE
FFGF RESTORE
FF59 OLDRST
FF7A CHRSRCH
FFAE NXTBS2
FFC7 ZMODE
FDTE CAPTST
FD96 PRYX2
FDBG DATAOUT
FDDA PRBYTE

FDFO COUT 1
FEOB STDR
FE2O LT
FE5B VFYOK
FETE A1PCLP
FEBG SETIFLG
FE93 SETVID
FEAT IOPRTI
FEB6 GD
FECA USR
FEEF WRBYTE
FF16 RD3
FF44 RESTR1
FF6S MON
FFBA DIG
FFAT GETNUM
FFCC CHRTBL
FD84 ADDINP
FDA3 XAME
FDC5 RTS4C
FDE3 PRHEX
FDFG COUTZ
FEIT RTSS
FE22 LTZ
FESE LIST
FE7F A1PCRTS
FE日9 SETKED
FE95 QUTPORT
FEAS IDPRT2
FEBF REGZ
FECD WRITE
FEFE CRMON
FFED PRERR
FF4A SAVE
FF6 9 MONZ
FF90 NXTBIT
FFAD NXTCHR
FFEB SUBTBL
FDEE CROUT
FDAD MODECHK
FDCG XAMPM
FDES PRHEXZ
FEOO BLI
FE1日 SETMODE
FE2C MOVE
FEST LISTE
FE日O SETINV
FEBB INPORT
FE97 DUTPRT
FEBO XBASIC
FECE TRACE
FED4 WRI
FEFD READ
FF3A BELL

SYMBOL TABLE (ALPHABETICAL ORDER)

QO3D A1H
FETF AIPCRTS
0040 ABL
0044 ASL
FBF4 ADVANCE
OOZA BASZL
0029 BASH
FD71 BCHSFC
FEOO BL 1
FCIO BS
F9EA CHARZ
0024 CH
CO59 CLRANO
FCGC CLREOL
FB3C CLRSC3
FDED CDUT
FCGE CR
0025 CV
FEAS ERR
FB97 ESCOLD
F9AG FMT2
OOZG GEASL
FDGA GETLN
FCC9 HEADR
FG19 HLINE
0200 IN
FE日E INSDS1
COOO IDADR
O3FE IRQLDC
COOO KBD
0038 KSWL
0400 LINE 1
0000 LOCO
FE22 LTE
COS3 MIXSET
FECZ MNNDX2
FF69 MONZ
FAB1 NEWMON
FDSF NOTCRI
FF9日 NXTBAS
FD75 NXTCHAR
FA59 OLDBRK
FE97 QUTPRT

F956 PCADJ3
0095 PICK
F910 PRADRI
F930 PRADR5
FDDA PREYTE
FDE3 PRHEX
FGDB PRNTEL
0033 PROMPT
OJF4 PWREDUF
FF16 RD3
FD35 RDCHAR
FAD7 REGDSP
FF3F RESTORE
004 F RNDH
FETF RTMSKZ
F961 RTS2
003C A1L
$003 F \mathrm{ADH}$
0043 A 4 H
0045 ACC
OJF5 AMPERV
FBC 1 BASCALC
EOOO BASIC
FBD9 BELL 1
FEO4 BLANK
FDGE CANCEL
OO2E CHKSUM
FCAO CLEOL?
COSE CLRAN1
FC42 CLREDP
F832 CLRSCR
FDFO COUT 1
FEFG CRMON
FDEG DATADUT
FC2C ESC1
FD2F ESC
OOLE FGRMAT
FB5G GBCALC
FFA7 GETNUM
COS7 HIRES
FCSE HOME
FBEF INIT
FBEC INSDS2

FEA7 IDPRT1
FA40 IRQ
FDIB KEYIN
OOZF LASTIN
FESE LIST
0001 LDC 1
FE20 L.T
FGCO MNEMIL
FECG MNNDX3
FF6 5 MON
O3FE NMI
FB94 NOWAIT
FF9O NXTEIT
FFAD NXTCHR
FF59 GLDRST
CO64 PADDLO
F95C PCADJ4
FGOE PLDT 1
F914 PRADR2
F94A PRBLE
FBIE PREAD
FDES PRHEXZ
FED4 PRNTOP
FD96 PRYX2
FAAG PWRUP
FCFD RDBIT
FDOC RDKEY
FEBF REGZ
FF44 RESTR1
$004 E$ RNDL
FB31 RTS1
FBFC RTS3
FETE AIPCLR
003E Aㄹㄴ
0042 A4L
FDE4 ADDINP
FB60 APPLEII
FBDO BASCLCE
E003 BASIC2
FBE 4 BELLE
FAAC BREAK
FD7E CAPTST
FF7A CHRSRCH

FC9E CLEOLZ
COSD CLRANE
CFFF CLRRDM
FG36 CLRTOP
FDFE CDUTZ
0037 CSWH
FFBA DIG
FBAS ESCMEW
FA9B FIXSEV
FB47 GBASCALC
FBAG GETFMT
FEBG GD
COS5 HISCR
FB9B IEVEN
FEEB INPDRT
FEDO INSTDSP
FEAG IDPRTE
COIO KBDSTRB
FDE1 KEYIN2
OOEF LENGTH
FEE3 LISTE
COSG LORES
OO2E MASK
FAOO MNEMR
FDAD MODECHK
FE2C MOVE
FAAB NOFIX
FCBA NXTAI
FFAD NXTBSE
FEF5 NXTCOL
FCEE ONEDLY
F954 PCADJE
003 PCH
FGOO PLDT
F926 PRADR3
F94C PRBL 3
FB25 PREAD2
FBFG PRMN2
F944 PRNTX
COTO PTRIG
FCFA RDEDIT
FCEE RDEYT？
FAE4 RDSP 1
F939 RELADR
FADA RGDSP 1
FB19 RTBL
FBEF RTSE日
FCCE RTS4E
FE75 A1PC
0041 A 3 H
0045 A5H
FDD1 ADD
OO2B BAS2H
FEBS BASCDNT
QO2日 BASL

FF3A BELL
Q3FO BRKV
FGB4 CHAR1
FFCC CHRTBL
FC4B CLEDPI
COSF CLRAN：
F838 CLRSC2
0030 COLAR
FDEE CROUT
0036 CSWL
FBOE DISKID
FE9B ESCNOW
F962 FMT1
0027 GEASH
FD67 GETLLNZ
002 CH H
FBIC HLINEI
FAGF INITAN
FE日D INPRT
0032 INVFLG
FEQB IOPRT
FBEG KBDWAIT
0039 KSWH
FCbt LF
002 C LMINEM
C054 LOWSCF
COS2 MIXCLR
FEBE MINNDX1
0031 MODE
OTFB MSLDT
FD3D NOTCR
FCB4 NXTA4
FAC7 NXTBYT
FF73 NXTITM
FE95 ロUTPORT
F953 PCADJ
$003 A \mathrm{PCL}$
FD92 PRA1
FgEA PRADRA
F94E PRBLNK
FFED PRERR
F941 PRNTAX
F940 PRNTYX
FAFD PWRCDN
FFOA RDE
FCEC RDEYTE
FEFD READ
FAGE RESET
OODD RMNEM
FEOC RTMASK
FB2E RTSED
FDCS RTS4G
FE17 RTSS
FC2B RTS4
FC76 SCRL 1
FB79 SCRN2

COSC SETANE
FEBG SETIFLG
FE1日 SETMUDE
FBGF SETPWRC
OOZF SIGN
0049 SPNT
FEOB STOR
COGO TAPEIN
FEC 2 TRACE
FECA UER
FESB VFYOK
FB2B VLINE
FCAE WAIT
0022 WNDTOP
FEEF WREYTE
FDAZ XAMB
FB11 XLTBL
0034 YSAV
FCBC SCRLZ
FC70 SCROLL
COSE SETAN3
FE日O SETINV
FEE4 SETNDRM
FB399 SETTXT
FABA SLDOP
OO4E STATUS
FBFO STDRADV
CO2O TAPEDUT
CO50 TXTCLR
O3FE USRADR
FBFD UIDOUT
FC24 UTABZ
FCAA WAIT＇3
0021 WNDWDTH
FEED WRBYTE
FDC6 XAMPM
0046 XREG
FCDE ZERDLY
FF4C SAV1
FC95 SCRL3
COSE SETANO
FB64 SETCOL
FEB9 SETKBD
FAAC SETPG3
FE9＇3 SETVID
OBF2 SOFTEV
FEC4 STEPZ
FFES SUBTBL
FB09 TITLE
COSI TXTSET
002D V2
FB7E VIDWAIT
FC22 UTAB
0023 WNDETM
FED4 WR1

```
FECD WRITE
FDB3 XAM
O047 YREG
FFC7 ZMODE
FF4A GAVE
FE71 SCRN
COSA SETAN1
FB40 SETGF
FE1D SETMDZ
FAAE SETPLF
FB4B SETWND
COJO SPKR
FE6S STITLE
FBSB TABV
FFBE TOSUB
FCIA UP
FE,36 VFY
Fg2b ULINEZ
FCA9 WAIT2
O020 WNDLFT
FCDG WREIT
FCES WRTAPE
FEBO XBASIC
0035 YSAV1
```

SYMBOL TABLE SIZE
2599 BYTES USED
2531 BYTES REMAINING

GLOSSARY

6502: The manufucturer's name for the microprocessor at the heart of your Apple.
Address: As a noun: the particular number associated with each memory location. On the Apple, an address is a number belween 0 and 65535 (or $\$ 00 \emptyset$ and $\$ F F F F$ hexadecimal) As a verb: to refer to a particular memory location.

Address Bus: The set of wires, or the signal on those wires, which carry the binary-encoded address from the microprocessor to the rest of the computer.

Addressing mode: The Apple's ${ }^{2} 6562$ microprocessor has thirteen distinct ways of referring to most locations in memory. These thirteen methods of forming addresses are called addressing modes.

Analog: Analog measurements, as opposed to digital measurements, use an continuously variable physical quantity (such as length, voltage, or resistance) to represent values. Digital measurements use precise, limited quantities (such as presence or absence of voltages or magnetic fields) to represent values.

AND: A binary function which is "on" if und only if all of its inputs are "on"s
Apple: 1. The round fleshy fruit of a Rosaceous tree (Pyrus Malus). 2. A brand of personal computer. 3) Apple Compater, Inc., manufacturer of home and personal computers.

ASCII: An acronym for the American Standard Code for Information Interchange (often called "USASCI"" or misinterpreted as "ASC-II"). This standard code assigns a unique value from \emptyset to 127 to each of 128 numbers, letters, special characters, and control characters.

Assembler: 1) One who assembes electronic or mechanical equipment, 2) A program which converts the mnemonics and symbols of assembly language into the opcodes and operands of machine language,

Assembly language: A language similar in structure to machine language, but made up of ntromontics and symbols. Programs written in assembly language are slightly less difficult to write and understand than programs in machine language.

BASIC: Acronym for "Beginner's All-Purpose Symbolic Instruction Code*". BASIC is a higherlevel language, similar in structure to FORTRAN but somewhat easier to learn. It was invented by Kemney and Kurtz at Darmouth College in 1963 and has proved to be the most popular language for personal computers.

Binary: A number system with two digits, " θ " and " 1 ", with each digit in a binary number representing a power of two. Most digital computers are binary, deep down inside. A binary signat is easily expressed by the presence or absence of something, such as an electrical potential or a magnetic field.

Binary Function: An operation performed by an electronic circuit which has one or more inputs and onty one output, All inputs and outputs are binary signals. See AND OR, and Exclusive-OR.

Bit: A Binary diglT. The smallest amount of information which a computer can hold. A single bit specifies a single value: " \emptyset " or " 1 ". Bits can be grouped to form larger values (see Byre and Nybble).

Board: See Printed Circuil Board.

Bootstrap ("boot"): To get a system running from a cold-start The name comes from the machine's attempts to "pull itsef off the ground by tugging on its own bootstraps."

Buffer: A device or area of memory which is used to hold something temporarily. The "picture buffer" contains graphic information to be displayed on the video screen; the "input buffer" holds a partially formed input line.

Bug: An error. A hardware bug is a physical or electrical malfunction or design error. A softhare bug is an error in programming, elther in the logic of the program or typographical in nature. See "feature"

Bus: A set of wires or traces in a computer which carry a related set of data from one place to another, or the dita which is on such is bus.

Byte: A basic unit of measure of a computer's memory. A byte usualy comprises eight bils. Thus, it can have a value from 10255 . Each character in the $A S C I I$ can be represented in one byte. The Apple's memory locations are all one byte, and the Apple's addresses of these locations consist of two bytes.

Call: As a verb: to leave the program or subroutine which is currently execuling and to begin another, usualy with the intent io return to the original program or subroutine, As a nouns an instruction which calls a subroutine.

Character: Any graphic symbol which has a specific meaning to people. Letters (both upper-and lower-case), numbers, and various symbols (such as punctuation marks) are all characters.

Chip: See Integrated Circuit

Code: A method of representing something in terms of something else. The ASCLI code represents sharacters as binary numbers, the BASIC language represents algorithms in terms of program statements. Code is also used to refer to programs, usually in low-level languages.

Cold-start: To begin to operate a computer which has just been turned on.
Color burst: A signal which color television sers recognize and convert to the colored dots you see on a color TV sereen. Without the color burst signal, all pictures would be black-and-white.

Computer: Any device which can recieve and store a set of instructions, and then act upon those instructions in a predetermined and predictable fashion. The definition implies that both the Instruction and the data upon which the instructions act can be changed. A device whose instructions cannot be changed is not a computer.

Control (CTRL) character: Characters in the ASCl1 character set which usually have no graphic representation, but are used to control various functions. For example, the RETURN control character is a signal to the Apple that you bave finished typing an input line and you wish the compater to act apon it.

CRT: Acronym for "Cathode-Ray Tube", meaning any television screen, or a device containing such a screen.

Cursor: A special symbol which reminds you of a certain position on something. The cursor on a slide rule lets you line up numbers; the cursor on the Apple's screen reminds you of where you are when you are typing.

Data (datum): Information of any type

Debug: To find bugs and eliminate them
DIP: Acronym for "Dual In-line Package", the most common container for an Integrated Circuit. DIPs have two parallel rows of pins, spaced on one-tenth of an inch centers. DIPs usually come in 14-, 16-, 18*, 20-, 24-, and 40-pin configurations

Disassembler: A program which converts the opcodes of machine languago to the mumonozs of assembly languagh . The opposite of an assembler.

Display: As a nount any sort of output device for a computer, usually a video screen. As a noun: to place information on-such a screen.

Edge connector: A socket which mates with the edge of a printed circuir board in order to exchange efectrical sigoals.

Entry point: The location used by a machine-language subroutine which contains the first exccutable instraction in that subroutine: consequently, often the beginning of the subroutine.

Excusive-OR: A binary function whose value is "off" only if all of its inputs are "off", or all of its inputs are "on".

Execute: To perform the intention of a command or instruction. Also, to run a program or a portion of a program.

Feature: A bug as described by the markeling departmens.
Format: As a nount the physical form in which something appears. As a verb: to specify such u form.

Graphic: Visible as a distinct, recognizable shape or color.
Graphics: A system to display graphic items or a collection of such ifems.
Hardware: The physical parts of a computer.
Hexadecimal: A number system which uses the ren digits 0 through 9 and the six letters A through F to represent values in base 16. Each bexadecimal digit in a hexadecimal number represents a power of 16 . In this manual, all hexadecimal numbers are preceded by a dollar sign (\$).

High-level Language: A language which is more intelligible to humans than it is to machines.
High-order: The most importanh or them with the highest vaue, of a set of similar items. The high-order bit of a byte is that which has the highest place value.

High part: The high-order byte of a two-byte address. In decimal, the high part of an address is the quotient of the address divided by 256 . In the 6502 , as in many other microprocessors, the high part of an address comes last when that address is stored in memory.
$\mathrm{Hz}(\mathrm{Hertz})$: Cycles per second. A bicycle wheel which makes two revolutions in one second is running at 2 Hz . The Apple's microprocessor rüns at $1.023,000 \mathrm{~Hz}$

1/O: See Input/OutpuL

IC: See triegrated Circuit.

Input; As a noun data which flows from the outside world into the computer. As a verb: 10 obtain data from the outside world.

Input/Output (1/O): The software or hardware which exchunges data with the outside word.
Instruction: The smatlest portion of a program that a computer can execute. In 6502 machine language, an instruction comprises one, two, or three bytes; in a higher-level language, instructions may be many characters long.

Integrated circuit: A small (less than the size of a fingernail and about as thin) wafer of a glassy material (usually silicon) into which has been etched an electronic circait. A single IC can contain from ten to ten thousand discrete electronic components. ICs are usually housed in DIPs (see above), and the term IC is sometimes used to refer to both the circuit and its package.

Interface: An exchange of information between one thing and another, or the mechanisms which make such an exchange possible.

Interpreter: A program, usualy written in machine language, which understands and executes a higher-level language.

Interrupt: A physical effect which causes the computer to fump to a special interrupt-handling subroutine. When the interrupi has been taken care of, the computer resumes execution of the interrupted program with no poticeable change. Interrupts are used to signal the computer that a particular device wants attention.

K: Stands for the greek prefix "Kilo", meaning one thousand, In common computer-reated usage. " K " usually represents the quantity 2^{10}, or 1024 (hexadecimal $\$ 400$).

Kilobyte: 1,024 bytes.
Langugge: A computer language is a code which (hopefully!) both a programmer and his computer understand. The programmer expresses what he wants to do in this code, and the computer understands the code and performs the desired actions.

Line: On a video screen. a "line" is a horizontal sequence of graphic symbols extending from one edge of the screen to the other. To the Apple, an inpui line is a sequence of up to 254 characters, terminated by the control character RETURN. In most places which do not have personal computers, a line is something you wait in to use the computer.

Low-level Language: A language which is more intelligible to machines than it is 10 humans,
Low-order: The feast important, or tem with the léast vaiue, of a set of items. The low-order bit in a byte is the bit with the least place vaue.

Low part: The low-order byte of a two-byte address. In decimal, the low part of an address is the remainder of the address divided by 256 . also called the "address moduto 256," In the 6502, as in many other microprocessors, the low part of an address comes first when that address is stored in memory.

Machine language: The lowest level tanguage which a computer understands. Machine
languages are usually binary in nature. Instructions in machine language are single-byte opcodes sometimes followed by various operands.

Memory address: A memory address is a two-byte value which selects a single memory locawon out of the memory map. Memory addresses in the Apple are stored with their low-order bytes first, followed by their high-order bytes.

Memory location: The smallest subdivision of the memory map to which the computer can refer. Each memory location has associated with it a unique address and a certain value Memory locations on the Apple comprise one byte each.

Memory Map: This term is used to refer to the set of all memory locations which the microprovesor can address directly, 11 is also used to describe a graphic representation of a system's memory.

Microcomputer: A term used to described a computer which is based upon a microprocessor.
Microprocessor: An integrated circuil which understands and executes machine language programs.

Mnemonic: An acronym (or any other symbof) used in the place of something more difficut to remember. In Assembly Language, each machine language opcode is given a three letter mnemonic (for example, the opcode $\$ 60$ is given the mnemonic RTS, meaning "ReTurn from Subroutine" .

Mode: A condition or set of conditions under which a certain set of rules apply.
Modulo: An arithmetic function with two operands. Modulo takes the first operand, divides it by the second, and returns the remainder of the division.

Monitor: 1) A closed-circuit television receiver, 2) A program which allows you to use your computer at a very low level, often with the values and addresses of individual memory locations.

Multiplexer: An electronic circuit which bas many data inputs, a few selector inputs, and one output. A multiplexer connects one of its many data inputs to its output. The data input it chooses to connect to the output is determined by the selector inputs.

Mux: See Multiplexer.
Nybble: Colloquial term for half of a byte, or four bits.
Opcode: A machine language instruction, numerical (often binary) in nature.
OR: A binary function whose value is "on" if at least one of its inputs are "on"
Output: As a noun, data generated by the computer whose destination is the real world As a verb, the process of generating or transmitting such data.

Page: 1) A screenfall of information on a video display, 2) A quantity of memory locations, addressible with one byte. On the Apple, a "page" of memory contains 256 locations.

Pascal: A noted French scientist.
PC board: See Promted Circult Board.

Abstract

peripherals are input and/or output devices.

Personal Computer: A computer with memory, lanyuages, and peripherals which are well-suited for use in a home, office, or school.

Pinout: A description of the function of each pin on an IC, often presented in the form of a diagram.

Potentiometer: An electronic component whose resistance to the flow of electrons is proporthonal to the setting of a dial or knob. Also known as a "pot" or "variable resistor".

Printed Circuit Board: A sheet of fiberglass or epoxy onto which a thin layer of metal has been applied, then etched away to form rraces. Electronic components can then be attatched to the board with molten solder, and they can exchange electronic signals via the etched traces on the board. Small printed circuit boards are often called "cards", especially if they are meant to connect with edge connectors.

Program: A sequence of instructions which describes a process.
PROM: Acronym for "Programmable Read-Only Memory". A PROM is a ROM whose contents can be altered by electrical means. Information in PROMs does not disappear when the power is turned off. Some PROMs can be erased by ultraviolet light and be reprogrammed.

RAM: See Random-Access Memor.
Random-Access Memory (RAM): This is the main memory of a computer. The acronym RAM can be used to refer either to the integrated circuits which make up this type of memory or the memory itself. The computer can store values in distinet locations in RAM and recall them again, or alter and re-store them if it wishes. On the Apple, as with most small computers, the values which are in RAM memory are losi when the power to the computer is turned off.

Read-Only Memory (ROM): This type of memory is usually used to hold important programs or data which must be available to the computer when the power is first turned on Information in ROMs is placed there in the process of manufacturing the ROMs and is unalterable. Information stored in ROMs does not disappear when the power is turned off:

Reference: 1) A source of information, such as this manual. 2) As a verb, the action of examining or altering the contents of a memory location. As a noun, such an actions

Return: To exit a subroutine and go back to the program which called it.
ROM: See Read-Only Memory
Run: To follow the sequence of instructions which comprise a program, and to complete the process outlined by the instructions,

Scan line: A single sweep of a cathode beam across the face of a cathode-ray tube,
Schematie: A diagram which represents the electrical interconnections and circuitry of an electronic device.

Scroll: To move all the text on a display (usually upwards) to make room for more (usuadly at the bottom),

Soft switch：A two－position switch which can be＂thrown＂either way by the software of a com－ puter．

Software：The programs which give the hardware something to do．
Stack：A reserved area in memory which can be used to store information temporarily，The information in a stack is referenced not by address，but in the order in which it was placed on the stack．The last datum which was＂pushed＂onto the stack will be the first one to be＂popped＂ off it．

Strobe：A momentary signal which indicates the oecurrence of a specific event．
Subroutine：A segment of a program which can be executed by a single call．Subroutines are used to perform the same sequence of instructions at many different places in one program．

Syntax：The structure of instructions in a given language，If you make a mistake in entering an insiruction and garble the symax，the computer sometimes calls this a＂SYNTAX ERROR．＂

Text：Characters，usually letters and numbers．＂Text＂usually refers to large chunks of English， rather than computer，language．

Toggle switch：A two－position switch which can only flip from one position to the other and back again，and cannot be directly set either way

Trace：An etched conductive path on a Printed－Circuit Board which serves to electronically con－ nect componenis．

Video：1）Anything vistail，2）Information presented on the face of a cathode－ray tube
Warm－start：To restart the operation of a computer after you have lost control of its language of operating system．

Window：Something out of which you jump when the power fails and you lose a large program． Really：a reseryed area on a display which is dedicated to some special purpose．

BIBLIOGRAPHY

Here are some other publications which you might enjoy：

Synertek／MOS Technology 6500 Programming Manual

This manual is an introduction to machine language programming for the MC6502 microproces－ sor．It describes the machine lanuage operation of the Apple＇s microprocessor in meticulous detail．However，it contains no specific information about the Apple．

This book is available from Apple，Order part number A2L0003．

Synertek／MOS Technology 6500 Hardware Manual

This manual contains a detailed description of the internal operations of the Apple＇s 6502 microprocessor．It also has much information regarding interfacing the microprocessor to exter－ nal devices，some of which is pertinent to the Apple．

This book is also available from Apple．Order part number A2L0002．

The Apple II Monitor Peeled

This book contains a thorough，well－done description of the operating subroutines within the Apple＇s original Monitor ROM

This is available from the author：
William E．Dougherty
14349 San Jose Street
Los Angeles，CA 91345

Programming the 65 Hz

This book．written by Rodnay Zaks，is an excellent tutorial manual on machine and assembly－ language programming for the Apple＇s 6502 microprocessor．

This manual is available from Sybex Incorporated， 2020 Milvia，Berkeley，CA 94704．It should also be available at your local computer retailer or bookstore．Order book number C202．

6502 Applications

This book，also written by Rodnay Zaks，describes many applications of the Apple＇s 6502 microprocessor．

This is also available from Sybex．Order book number D302．

System Description：The Apple II

Written by Steve Wozniak，the designer of the Apple computers，this article describes the basic construction and operation of the Apple II．

This article was originally published in the May， 1977 issue of BYTE magazine，and is available from BYTE Publications，Inc．Peterborough，NH 30458.

SWEET16: The 6542 Dream Machine
Also written by Steve Wozniak, this arlicle describes the SWEET16" interprotive machine language enclosed in the Apple's Integer BASIC ROMs.

This article appeared in the October, 1977 issue of BYTE magazine, and is available from BYTE Publications, Inc, Peterborough, NH 30458.

More Colors for your Apple

This article, written by Allen Watson III, describes in detail the Apple High-Resolution Graphics mode. Also included is a reply by Steve Wozniak, the designer of the Apple, describing a modification you can make to update your Revision Apple to add the two extra colors available on the Revision I board.

This article appeared in the June, 1979 issue of BYTE magazine, and is available from BYTE Publications, Inc. Peterborough, NH 30458.

Call APPLE (Appie Puget Sound Program Library Exchange)

This is one of the largest Apple user group newsletters. For information, write:
Apple Puget Sound Program Library Exchange 6708 39th Ave. Southwest
Seatte, Wash., 98136

The Cider Press

This is another large club newsletter. For information, write:
The Cider Press
c/o The Apple Core of San Francisco
Box 4816
San Erancisco, CA 94101

INDEX

190 GENERAL INDEK 194 TNDEX OF HGWiRES
195 TNDEX OF PLIOMOS
145 INDEX OF EABLES
195. EAST OF CHARACTERS
θ boards. Revision 3. 26
1 board, Revision 3. 26
2716 type PROMs 94
50 Hz modification, Eurapple 10
6502 instruction sel Appendix A
6502 internal registers 53, 81
6502 microprocessor 3. 88

- A --
Access Memory (RAM). Random 3
address and data buses 88, 90
address multiplexer, RAM 96
addresses and data 40
addressing modes 66
analog inputs 24
annunciator outputs 23, 36, 100
annunciator special locations 24
Apple Firmware card 73
Apple Language card 3
Apple main board, the 3, 89
Apple Mini-assembler 49
Apple, photo of the 2
Apple power supply, the 2. 92
Apple, setting up the 2
Apples, varieties of 25
ASCII character code $5,6,7,8,15$
ASCll codes, keys and 7
Autostart ROM listing. Appendix C
Autostart ROM Reset 36
Autostart ROM special locations 37
Autostart ROM 25
auxiliary video connector 9
-- B .-
backspuce character 30
bäckspace key 34
BASIC, entering 34, 54
BASIC, reentering 34. 54
bell character 31
block pinous, configuration 71
blocks, RAM configuration 70
board 1/O, peripheral 79
board, Revision \emptyset 3. 26
board, Revision 1 3. 26
board, the Apple main 3, 89
board schematic, main 110
buffer, picture. 12
buffer, input 33
built-in I/O 78, 98
buses, address and data 88, 90
byte, power-up 37, 65
.- C --
card, Apple Language 3
card, Apple Firmware 73
cassette interface jacks 22. 103
cassette interface 22
cassette tape, saving to 46
casselle tape, reading from 47
changing memory 43
character code, ASCII $5,6,7,8,15$
character, backspace 30
character, line-feed 30
character, RETURN 30
character, bell 31
characters, prompting 33
characters, keyboard 7, 8
characters, control 7
clearing the keyboard strobe. 6
code, ASCII character. 5, 6, 7, 8, 15
codes, escape 34
codes, keys and ASCII 7
cold start 36
colors, Low-Res 11. 17
colors, High-Res 11. 19. 26
colors, European High-Res 20
command loops, Monitor 56
commands, ereating your own 57
commands, summary of Monitor 59
comparing memory 46
configuration block pinout 71
configuration blocks, RAM 70
configuration. RAM memory 70
connector pinout, peripheral 106
connector, keyboard 5. 102
connector, power 104
connector, speaker 105
connector, Game I/O 23, 100
connector, auxiliary video 9
cominector, video 9
conninectors, peripheral 3. 105
conninector pinouts, keyboard. 103
control characters 7
control values, Normal/Inverse 32
Controllers, Game 24, 100
COUT, KEYIN switches. 83
COUT standard output subroutine 30
creating your own commands 57
CSW/KSW switches 83
cursot 30
cursor, output 30
cycle, the RESET 36
- D -
data buses, address and 90
data, addresses and 40
debugging programs 51
display special locations, video 13
display, video 9
- E .-
editing an input line 33
editing features 25
entering BASIC 34, 54
entering the Montor 40
entry vector, soft 37
escape (ESC) codes 34
Eurapple 50 Hz modification 10
European High-Res colors 20
examining memory 41
expansion ROM 84
- F .-
feature, the Stop-List 26, 30
features, input/output 20
features, editing 25
features, keyboard 5
features, microprocessor 88
features, power supply 92
Firmware card, Apple 73
("flag") inputs, one-bit. 24, 78
format, Text screen 16
format, Low-Res screen 18
format, High-Res screen 21
from cassetle tape, reading 47
.- G .-
Game Controlfers 24
Game I/O connector 23, 100
generator, the video 96
GETLN and input lines 33
graphics modes 11
graphics. High-Res 19
graphics. Low-Res 17
-- H ..
hexadecimal notation 40
High-Res colors, European 20
High-Res graphics 19
High-Res screen, the 21
High-Res video mode, the 19
High-Res colors 19. 26
-- 1 --
input buffer 33
input line, editing an 33
input lines, GETLN and. 33
input prompting 32
input subroutine, RDKEY standard 32
input/output features 20
input/output special focations 25
input/output 78
imputs, data 78
inputs, one-bit ("flag") 24, 78
imputs, analog 24
inputs, single-bit pushbutton 78
insiruction set, 6502 Appendix A
instructions, Mini-Assembler 66
interface jacks, cassette, 22, 103
interface, cassette 22
internal registers, 6502 53, 81
interrupis 65, 107, 108
inverse text mode 32, 54
I/O connector, Game 23, 100
I/O programming suggestions 80
I/O special locations 79
I/O, buils-in 78. 98
I/O, peripheral board 79
I/O, peripheral slot 79
-- I
jacks, cassette interface 22, 103
jacks, video output 97
jumper, "USER 1" 99
-- K ..
key, backspáce 34
key, retype 34
keyboard characters 7. 8
keyboard connector 5, 102
keyboard connnector pinouts. 103
keyboard features 5
keyboard schematic 101
keyboard special locations 6
keyboard strobe 6. $78,79,98,102$
keyboard strobe, clearing the 6
keyboard, review of the 4. 100
keyboard, reading the 6
KEYIN switches, COUT, 83
keys and ASCII codes 7
.- L .
Language card, Apple 3, 69
leaving the Mini-Assembler 50
line, editing an input 33
line-feed character 30
lines, GETLN and input 33
listing, Autostart ROM Appendix C
listing, Monitor ROM, Appendix C
listing machine language programs 49
list of special tocations Appendix B
locations, list of special Appendix B
locations, annunclator special 24
locations, video display special 13
locations, input/output special 25
locations, text window special 31
locations, Autostart ROM special 37
locations, Monitor special 65
locations, keyboard special 6
locations, I/O special 79
loops, Monitor command 56
Low-Res colors 17
Low-Res screen, the 18
Low-Res video mode, the 17
lukewarm start 36
-- M
machine language programs, listing 49
main board, the Apple 3, 89
main board schematic 110
map, system memory 68
maps, zero page memory 74
Memory (RAM), Random Access 3
Memory (ROM), Read-Only 3
memory configuration, RAM 70
memory map, system 68
memory maps, zero page. 74
memory pages. 68
memory, examining 41
memory, changing 43
memory, moving 44
memory, comparing 46
memory, RAM 68, 95
memory, ROM 72, 94
microprocessor features 88
microprocessor, 6502 3. 88
Mini-Assembler instructions 66
Mini-Assembler prompt (!) 50
Mini-Assembler, Apple 49
Mini-Assembler, leaving the 50
mode. the text video 14
mode, the Low-Res video 17
mode, the High-Res video 19
mode, inverse text 32
mode, normal text 32
modes, addressing 66
modes. graphics 11
modification, Eurapple 50 Hz 10
Monitor command loops 56
Monitor commands, summary of 59
Monitor prompt (*) 40
Monitor ROM RESET 38
Monitor ROM listing Appendix C
Monitor ROM 25
Monitor special locations 65
Monitor subroutines, some useful. 61
Monitor, entering the 40
moving memory 44
multiplexer, RAM address 96
.. N ..
normal fext mode 32
Normal/Inverse control values 32
notation, hexadecimal 40
number, random 33
- 0 ..
one (system stack), păge 69
one-bit ("flag ") inputs. 24, 25, 78
output cursor 30
oulput jacks, video 97
output subroutine, COUT stāndard 30
output, utility strobe 25
outputs, annuriciator. 23
outputs, strobe 78
own commands, creating your 57
- P --
page memory maps, zero 74
page one (system stack) 69
page zero 69. 74
pages, screen 12
pages, memory 68
peripheral board I/O 79
peripheral connector pinout 106
peripheral connectors 3. 105
peripheral slot I/O. 79
peripheral slot RAM 82
peripheral slot ROM 80
photo of the Apple 2
picture buffer 12
pinout, peripheral connector 106

pinout, configuration block 71
pinout, ROM 95
pinout, RAM 96
pinouts, keyboard connnector. 103
power connector 104
power supply features 92
power supply schematic 93
power supply, the Apple 2. 28,92
power-up byte 37, 65
programming suggestions, I/O 80
programs, running muchine language 48
programs, listing machine language 48
programs, debugging 51
PROM, peripheral card 80
PROM, expansion ROM or 84
PROMs, 2716 type 94
prompt (-), Monitor 40
prompt (!), Mini-Assembler 50
prompting characters 33
prompting, input 32
pushbution inputs, single-bit 78
- R --
RAM address multiplexer 96
RAM configuration blocks 70
RAM memory configuration 70
RAM memory 68. 95
RAM pirout 96
RAM, peripheral slot 82
random access memory (RAM) , 3
random number. 33
RDKEY standard input subroutine 32
reading from cassette tape 47
reading the keyboard 6
read-only memory (ROM) 3
reentering BASIC 34, 54
registers, 6502 internal 53, 81
relationships, timing signals and 91
RESET cycle, the 36
RESET, Autostart ROM 36
RESET, Monitor ROM 38
return character 30
retype key 34
review of the keyboard 4, 100
Revision Ø boards 3, 26
Revision 1 board 26
ROM listing, Autostart. Appendix C
ROM listing. Monitor Appendix C
ROM memory 72, 94
ROM pinout 95
ROM RESET, Autostart 36
ROM RESET, Monitor 38
ROM special locations, Autostarı 37
ROM, Autostart 25
ROM, Monitor 25
ROM, peripheral slot 80
ROM or PROM, expansion 84
running machine language programs. 48
.. S .-
saving to cassette tape 46
schematic, keybord 101
schematic. power supply 93
schematic. main board 110
screen format. 11
screen format, Text 16
screen format, High-Res 21
screen format, Low-Res 18
screen pages 12
screen soft switches 12
screen, the text 16
screen, the Low-Res 18
screen, the High-Res 21
set, 6502 insiruction Appendix A
setting up the Apple 2
signals and relationships, timing 91
single-bit pushbutton inputs 78
slot I/O, peripheral 79
slot RAM, peripheral 82
slot ROM, peripheral 80
soft entry vector 37
soft switches 12. 79, 98
soft switches, screen 12
speaker connector 105
special locations, list of Appendix B
special locations, video display 13
special locations, input/output 25
special focations, text window 31
special locations, Autostart ROM 37
special locations, Monitor 65
special locations, keyboard 6
special locations, I/O 79
stack), page one (system 69
standard input subroutine, RDKEY 32
standard outpus subroutine, COUT 30
start, cold 36
starl, lukewarm 36
start, warm. 36
STEP and TRACE. 26, 51
Stop-List feature, the 26, 30
strobe output, utility 25
strobe outputs 78
strobe, clearing the keyboard 6
subroutine, COUT standard output 30
subroutine, RDKEY standard input 32
subroutines, some useful Monitor. 61
suggestions, I/O programming 80
summary of Monitor commands 59
supply features, power 92
supply schematic, power 93
supply, the Apple power 2, 28, 92
switches, soft $12,79,98$
switches, screen soft 12
switches, toggle 79
switches, COUT, KEYIN 83
switches, CSW/KSW 83
system memory map 68
(system stack), page one 69
system timing 90
-- T I -
tape, saving to cassette 46
tape, reading from cassette 47
lext mode, inverse 32
text mode, normal 32
text screen, the 11. 16
lext video mode, the 14
text window spécial locations 31
text windaw, the 31
timing signals and relationships 91
timing, system 90
toggle switches 79
TRACE, STEP and 26. 51
.- U -.
"USER 1" jumper 99
useful Monitor subroutines, some 61
utility strobe output 25
- V -
values, Normal/Inverse control. 32
varieties of Apples 25
vector, soft entry 37
video connector 9
video connector, auxiliary 9
video display 9
video display spectal locations 13
video generator, the 96
video mode, the text 14
video mode, the Low-Res 17
video mode, the High-Res 19
video output jacks 97
-- W -.
warm starl 36
window special locations, lext 31window, the lext31
.- Y
your own commands, creating 57
- Z ..
zero page memory maps 74
zero, page 69. 74
INDEX OF FIGURES
Figure 1, Map of the Text screen 16
Figure 2, Map of the Low-Res mode 18
Figure 3, Map of the High-Res screen 21
Figure 4. Cursor-moving escape codes 35
Figure 5. System Memory Map 68
Figure 6. Memory Configurations 71
Figure 7. Configuration Block Pinouts 71
Figure 8 Expansion ROM Enable circuil.. 85
Figure 9, SCFXX decoding 85
Figure 10. The Apple Main Board 89
Figure 11. Timing Signals 91
Figure 12. Power Supply Schematic 93
Figure 13, ROM Pinout 95
Figure 14. RAM Pinouts 96
Figure 15. Auxiliary Video Connector 98
Figure 16. Game I/O Connector Pinout. 100
Figure 17. Keyboard Schemalic Drawing. 101
Figure 18. Keyboard connector Pinout 103
Figure 19. Power Connector 104
Figure 20. Speaker Connector 105
Figure 21. Peripheral Connector Pinout: 106
Figure 22. Main Board Schematie. 110-115
INDEX OF PHOTOS
Photo 1. The Apple II 2
Photo 2. The Apple Power Supply 3
Photo 3. The Apple Keyboard 6
Photo 4. The Videa Connectors 10
Photo 5. Eurapple jumpér pads 11
Photo 6. The Apple Character Set 14
Pholo 7. The Game 1/O Conincetor 23
Photo 8. The USER 1 Jumper 99
INDEX OF TABLES
Table 1. Keyboard Special Locations 6
Table 2. Keys and their ASCII codes 7
Table 3. The ASCll Character Set 8
Table 4. Video Display Memory Ranges 12
Table 5, Screen Soft Switches. 13
Table 6. Screen Mode Combinations 13
Table 7. ASCII Screen Character Set 15
Table 8, Low-Resolution Colors 17
Table 9. Annunciator Special Locations 24
Table 10, Input/Output Special Locations 25
Table 11. Text Window Special Location 31
Table 12. Normal/Inverse Control Vulues 32
Table 13. Autostani ROM Special Locations 37
Table 14. Page Three Monitor Locations 65
Table 15, Mini-Assembler Address Formals, 66
Table 16, RAM Organization and Usage 69
Table 17. ROM Organization and Usage 72
Table 18, Monitor Zero Page Usage 74
Table 19. Applesoft II Zero Page Usage 74
Table 20. DOS 3.2 Zero Page Usage 75
Table 21. Integer BASIC Zero Page Usage 75
Table 22. Built-In I/O Locations 79
Table 23. Peripheral Card I/O Locations 80
Table 24. Peripheral Card PROM Locations, 81
Table 25, I/O Location Base Addresses 82
Table 26, 1/O Scratchpad RAM Addresses. 83
Sigual Descriptions:
Table 27, Timing 90
Table 28. Auxiliary Video Outpui 97
Table 29. Game I/O Connector 100
Table 30. Keyboard Connéctor 102
Table 31. Power Connéctor 104
Table 32. Speaker Connector 105
Table 33. Peripheral Connector 107 fi

CAST OF CHARACTERS

1 33
\# 66
$\$$ 50. 66
\& 65
. 40
$+$ 55

- 55
(colon) 43
(period) 41
$<$ 45, 46
$>$ 33
$?$ 33
(a) 35
A 34
B 34
C 35
D 35
E 35
F 35
G 48
I $25,35,54$
J 25, 35
K 25, 35
L. 49
M $25,35,45$
N 54, 55
R 47
S 52
T 52
V 46
W 47
CTRL B 54
CTRL C 30, 40, 54
CTRLE 53
CTRL G (bell) 30
CTRL H (-) 30, 33, 34
OTRL J (line feed) 30
OTRL K 55
CTRL P 54
CTRL S 26, 30
CTRL U (-) 33. 34
CTRL X 33
CTRL Y 57. 58
ESC 25, 34
RETURN 30, 33, 43
[... 8

8. 33
9. 3350

[^0]: * You cas extend your RAM memory to 64k by purchasing the Apple Language Card, pari of the Apple Lamguage System (part number A2B0006)

[^1]: - The Apple II is designed wr use both the 16 K und the lesk expensiye 4 K RAMs, However- due to the grearet
 availabilay and redueed cost of the 16 K chips, Apple now supplics only the 16 K RAMs

[^2]: * All ASCII codes used by the Apple normally have their high hil sel. This is the same as standaril markrarity ASCII

[^3]: * This pin is not present in Apple II systems with the flevision $\|$ board.

[^4]: *For Apples with Revision andros. Thope are fout colors hlack, whise, gteen, and vyolet

[^5]: "These moder are only visinleil the "Display GRAPHICS" swilch is "om"

[^6]: * The featute to not mesent on the Revision a board.

[^7]:

[^8]:

 SM4
 581
 502
 593
 504

 505
 5016
 507
 508
 549
 50 A
 59 H
 59 H
 5 ACO
 50 D
 SMIE
 sur
 516
 511
 312
 $\$ 13$
 514
 514
 $\$ 15$
 516
 517
 518
 518
 518
 518
 318
 516
 310
 510
 518
 5117
 520

 521
 522
 $\$ 27$
 524
 525
 526
 527

[^9]: - On Revoson of Apple bourds. Ihe cotors red and bluo are unavailable und the sebing of the siphot bit is isrelevan!

[^10]: *Sec lbe provinus table.

[^11]: * From later aweaso "ruaner"
 " The Staptisi feabute is not present on Apples without the Autobtian ROM

[^12]: ＊These four escape codes ure not available on－Apples without the Autostart Monitor ROM

[^13]: * Poweron RESET cycles occur only on Revision I Apples or Revisinn A Appies with at leasr one Disk II conrfoller card.

[^14]: * This does nol work on Apples withou the Aurotian ROM

[^15]: *In the examples, your queries are in normal rype and the Apple replies in boldfacs
 *The values printed in these examples may difter from the values displayed by your Apple for the sarme insifuctions.

[^16]: 4et. Inus, if is not abailahle not Apple II Plus aystems or while Firmware Applesof II is in use

[^17]:
 ＊The STEP and THACE chmmpris ate mot avalable no Apples whit the Autostart ROM

[^18]: * See page 127 in the Applesoft II BASIC Reference Mannal

[^19]: * See "But Sofl ", poge 3)

[^20]: - The voltage selecjor swith is not presient on sume Apples.
 * The fower supply car run 20 minutes with int incermilient iond if followed hy 10 minures at normat inad withour dimater

[^21]: - Leading inturs are for cach neripharal card

[^22]: - Loading limirs are for each nerisheral card.
 * See page 99

[^23]: - Loading imis are for each periphenil pard.

